temperature boundary
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 47)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 904 ◽  
pp. 35-41
Author(s):  
Hua Zhou ◽  
Jian Xin Ding ◽  
Zhi Cheng Zhang ◽  
Zhan Jun Wang

The water temperature distribution and spatio-temporal variation law of the reservoir have a great influence on the water quality and ecological environment of the reservoir, and it is also an important temperature boundary condition for the design of concrete dam of hydropower station project, which is of great significance for the optimal design and operation of the reservoir. There are many factors affecting the water temperature of the reservoir, and it is difficult to predict the water temperature distribution accurately because of the lack of data and experience. In this paper, a numerical analysis model is established for the reservoir of a hydropower station on the Nam Ngum in Laos, and the water temperature of the reservoir is calculated and predicted, and the water temperature distribution in the reservoir and the water temperature distribution in front of the dam are analyzed and discussed. The results show that the solar shortwave radiation is the main factor affecting the temperature stratification of the reservoir. The stable low temperature layer of the reservoir is not obvious, but there is a tendency to form stratification. The research results can provide water temperature value for the design of concrete dam of the hydropower station and provide reference for the prediction of the water temperature of other similar reservoirs.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012042
Author(s):  
Zhengyang Fei ◽  
Jiajia Deng ◽  
Jinshu Lu ◽  
Bin Wang ◽  
Dawen Xue

Abstract The evaporation process of LNG droplets in BOG is closely related to the cooling down process of the LNG tank, but there isn’t an available droplet evaporation model at present. Been prepared based on the conservation of mass, momentum, and energy, a CFD model of natural convection evaporation of a single LNG saturated droplet in the BOG was developed and applied. The results show that:①There are two distinguished zones around the droplet surface, where the local temperature boundary layer of the droplet gradually thickens and rapidly thickens with the increase of the angle of inflow from 0 ° to 90 ° and from 90 ° to 180 °, respectively; ② With the increase of droplet size, the average thickness of temperature boundary layer increases gradually, which leads to the decrease of relative evaporation rate;③“blowing effect” remains almost unchanged with the increase of droplet size.


Author(s):  
Bo Zhang ◽  
Kai Gu ◽  
Peter Bayer ◽  
Bin Shi ◽  
Fulin Xiang ◽  
...  

Subsurface flow rates are critical for hydrology and geothermal research, while field characterization remains a challenge. There are several analytical solutions for calculating the vertical water flux based on measured temperatures. Heat is a popular natural tracer to estimate subsurface flow rates. However, quantifying flow rates is impeded by insufficient sensors spacing during field investigations or simplifying assumptions for analysis such as sinusoidal temperature boundary. The objective of this study is to develop a convenient method to investigate subsurface flow on the sub-meter scale. Here, we present a program to estimate water fluxes based on temperature-depth profiles, so-called TempFlow. TempFlow is a numerical program written in MATLAB that calculates steady state flow in transient heat tracing based on the inversion of measured high-resolution temperature-depth series observed at a certain time. In this program, the Fiber Optic Distributed Temperature Sensing (FO-DTS) is recommended for temperature collection. FO-DTS techniques provide high-resolution temperature measurements with continuous temperature profiles that account for sub-meter scale and nonperiodic boundary conditions in saturated sediments. The estimated subsurface flow using TempFlow was validated in a medium-scale tank with a series of experiments, where the hydraulic and temperature boundary conditions were well-controlled. The results indicate that the estimation using TempFlow obtained similar results as the experiments. Thus, the method could potentially be used to determine the flow rate of the subsurface.


2021 ◽  
Author(s):  
Patrice Lasne ◽  
Philippe Bristiel ◽  
Nicolas Poulain

Abstract The objective of the paper is to present material and numerical models needed to simulate with accuracy the full carburizing process of an automotive gear. The rough dimensions of the gear studied are 120mm in diameter and 45mm in height. From a numerical standpoint, as the carburizing affects only a thin layer under the surface, the mesh discretization must be adapted. Consequently, anisotropic mesh is used to describe accurately this zone. The temporal discretization must be also adapted to follow carbon diffusion and thermal evolution. The material models represent metallurgical phenomena during the complete carburizing process. The initial heating of the part induces phases transformation due to austenization. Subsequently, while holding at carburizing temperature, boundary conditions are applied to diffuse carbon into the part. While carbon content increases next to the surface, austenitic metallurgical grain growth is also modelled. A final cooling sets the properties of the carburized part. The model takes into account the phase changes using phase transformation diagrams locally adapted to chemical compositions and grain sizes. Simulation is used to predict the in-use properties of the gear at the end of the carburizing process as well as important results such as assessment of distortion and residual stresses. Thermal stresses, volume variation due to phase changes, and transformation plasticity all contribute to establish the final mechanical properties of the part. During the complete process, the material is modelled with an elasto-viscoplastic behavior and mixing methods are used to consider the relative contribution of each phase.


2021 ◽  
Vol 122 (7) ◽  
pp. 657-664
Author(s):  
V. A. Shabashov ◽  
K. A. Lyashkov ◽  
N. V. Kataeva ◽  
L. G. Korshunov ◽  
V. V. Sagaradze ◽  
...  

Abstract Using the Mössbauer spectroscopy and transmission electron microscopy (TEM) methods, the temperature boundary of a strain-induced transformation with the inversion of the direction of nitrogen redistribution is determined in the structure of the FeMn22Cr18N0.83 austenitic steel. Deformation by high pressure torsion in Bridgman anvils below the temperature limit (298 K) leads to an increase in the amount of nitrogen in the interstitial solid solution and deformation above the limit (373 K) leads to a decrease in this value. An increase in the deformation temperature leads to the complete dissolution of the products of cellular decomposition and the formation of submicrocrystalline austenite with secondary nanocrystalline nitrides. Changes in the direction of nitrogen redistribution are explained by the competition between the mechanisms of relaxation of the structure along the paths of dispersion, dissolution of nitrides by dislocation, and decomposition of a solid solution supersaturated with nitrogen.


Inventions ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 26
Author(s):  
Farhan Khan ◽  
Xiaodong Yang

Nanofluids are composed of nano-sized particles dispersed in a carrier liquid. The present investigation’s aim is to examine theoretically the magneto-thermomechanical coupling phenomena of a heated nanofluid on a stretched surface in the presence of magnetic dipole impact. Fourier’s law of heat conduction is used to evaluate the heat transmission rate of the carrier fluids ethylene glycol and water along with suspended nanoparticles of a cobalt–chromium–tungsten–nickel alloy and magnetite ferrite. A set of partial differential equations is transformed into a set of non-linear ordinary differential equations via a similarity approach. The computation is performed in Matlab by employing the shooting technique. The effect of the magneto-thermomechanical interaction on the velocity and temperature boundary layer profiles with the attendant effect on the skin friction and heat transfer is analyzed. The maximum and minimum thermal energy transfer rates are computed for the H2O-Fe3O4 and C2H6O2-CoCr20W15Ni magnetic nanofluids. Finally, the study’s results are compared with the previously available data and are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document