cell strains
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 19)

H-INDEX

47
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hua Meng ◽  
Kun Guo ◽  
Yun Zhang

Objective. LINC01320 is a new oncogenic gene. Nevertheless, the effect of LINC01320 on pancreatic cancer (PC) is still unclear. This research aimed to seek the influence of LINC01320 on PC and its possible mechanism. Methods. RT-qPCR is used to test the LINC01320 in tissues and cells. Cell viability, apoptosis, migration, and invasiveness are detected to explore the role of LINC01320 in PC, and target genes are predicted by bioinformatics methods. The mechanism of action was further explored by transfection of specific siRNA, miRNA mimetics, or miRNA inhibitors. In order to verify the effect of LINC01320 in vivo, we carried out tumor xenotransplantation. Results. We conclude that LINC01320 is highly expressed in PC tissues and cell strains. LINC01320 high expression was bound up with a poor prognosis. LINC01320 gene knockout inhibited the growth, migration, and invasiveness of PC cells. In addition, LINC01320 is expressed by miR-324-3p, which is also supported by in vivo experiments. Conclusion. LINC01320 is highly expressed in PC, and it can suppress the growth and migration of PC cells through targeted regulation of miR-324-3p, which is expected to become a latent target for clinical treatment.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi8-vi8
Author(s):  
Keitaro Kai ◽  
Yoshihiro Komohara ◽  
Takahiro Yamamoto ◽  
Ken Uekawa ◽  
Tatsuya Takezaki ◽  
...  

Abstract Purpose: Previous studies have revealed that macrophages affect the prognosis of glioblastoma. However, there are still many unknown parts about the mechanism. In this study, we conducted an experiment with the aim of elucidating the mechanism by which tumor associated macrophages (TAM) work on tumors in the tumor microenvironment (TME). Method: Experiments were carried out using two glioblastoma cell strains, T98G, and U251. For clinical data, we analyzed it based on databases such as Protein Atlas, Ivy Glioblastoma Atlas, brain TIME database. Results: In 3D culture, we confirmed that IL-1β stimulation promoted glioblastoma cell proliferation and sphere formation. The addition of IL-1β increased mRNA expression of various cytokines such as IL-6 and CXCL8, and increased phosphorylation of STAT3 in arrays. When we administered IL-6 and CXCL8, the growth was significantly increased in cells administered with IL-6 and CXCL8. As a result, we speculated that STAT3 pathway and NFκB pathway via IL-6 and CXCL8 are involved in cell proliferation by IL-1β. In order to confirm these things, western blot was performed, and it was confirmed that phosphorylation of STAT3 and NFκB were increased. In addition, STAT3 inhibitors and NFκB inhibitors suppressed tumor growth. Clinically analysis was carried out based on the database, and it was found that IL-1β and macrophages were related. Furthermore, IL-1β was found in many cases around tumor necrosis. Discussion: This study clarifies some of the effects of IL-1β on glioblastoma. However, there are still many unknown points, and it is necessary to continue to consider them in the future.


2021 ◽  
Author(s):  
Amanda M. Bifani ◽  
Hwee Cheng Tan ◽  
Milly M. Choy ◽  
Eng Eong Ooi

The expansion of the geographical footprint of dengue viruses (DENVs) and their mosquito vectors have affected more than half of the global population, including older adults who appear to show elevated risk of severe dengue. Despite this epidemiological trend, how ageing contributes to increase dengue pathogenesis is poorly understood. A limitation has been the lack of useful in vitro experimental approaches; cell lines commonly used for infection studies are immortal and hence do not age. Cell strains, such as WI-38 and MRC-5 with diploid genomes, do age with in vitro passaging but these cell strains were isolated decades ago and are now mostly highly passaged. Herein, we show that reprogramming of cell strains with finite lifespan into induced pluripotent stem cells (iPSCs), followed by conversion back into terminally differentiated cells, can be an approach to derive genetically identical cells at different stages of ageing. The iPSC-derived differentiated cells were susceptible to wild-type DENV infection and produced greater levels of type-I interferon expression with increase passaging, despite similar levels of infection. In contrast, infection with the attenuated DENV-2 PDK53 and YF17D-204 strains showed reduced and increased levels of infection with increasing passages; the latter could be clinically pertinent as YF17D-204 vaccination in older adults is associated with increased risk of severe adverse outcome. The differences in infection susceptibility and host response collectively suggest the potential of iPSC-derived cell strains as a genetically controlled approach to understand how ageing impacts viral pathogenesis. Importance Ageing has been a risk factor for poor clinical outcome in several infectious diseases, including dengue. However, age-dependent responses to dengue and other flaviviral infection or vaccination have remained incompletely understood due partly to lack of suitable laboratory tools. We thus developed an in vitro approach to examine age-related changes in host response to flaviviral infection. Notably, this approach uses cell strains with diploid rather than aneuploidic genomes, which are unstable. Conversion of these cells into iPSCs ensure sustainability of this resource and reprogramming back into terminally differentiated cells would, even with limited number of passages, produce cells at different stages of ageing for infection studies. Our findings suggest that this in vitro system has the potential to serve as a genetically-controlled approach to define the age-related response to flavivirus infection.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5255
Author(s):  
Marco Lo Iacono ◽  
Soraya Puglisi ◽  
Paola Perotti ◽  
Laura Saba ◽  
Jessica Petiti ◽  
...  

Mitotane is the only approved drug for the treatment of advanced adrenocortical carcinoma and is increasingly used for postoperative adjuvant therapy. Mitotane action involves the deregulation of cytochromes P450 enzymes, depolarization of mitochondrial membranes, and accumulation of free cholesterol, leading to cell death. Although it is known that mitotane destroys the adrenal cortex and impairs steroidogenesis, its exact mechanism of action is still unclear. The most used cell models are H295-derived cell strains and SW13 cell lines. The diverging results obtained in presumably identical cell lines highlight the need for a stable in vitro model and/or a standard methodology to perform experiments on H295 strains. The presence of several enzymatic targets responsive to mitotane in mitochondria and mitochondria-associated membranes causes progressive alteration in mitochondrial structure when cells were exposed to mitotane. Confounding factors of culture affecting in vitro experiments could reduce the significance of any molecular mechanism identified in vitro. To ensure experimental reproducibility, particular care should be taken in the choice of culture conditions: aspects such as cell strains, culture serum, lipoproteins concentration, and culture passages should be carefully considered and explicated in the presentation of results. We aimed to review in vitro studies on mitotane effects, highlighting how different experimental conditions might contribute to the controversial findings. If the concerns pointed out in this review will be overcome, the new insights into mitotane mechanism of action observed in-vitro could allow the identification of novel pharmacological molecular pathways to be used to implement personalized therapy.


2021 ◽  
Author(s):  
Manish L. Raorane ◽  
Christina Manz ◽  
Sarah Hildebrandt ◽  
Marion Mielke ◽  
Marc Thieme ◽  
...  

Abstract Since the discovery of the anticancer drugs vinblastine and vincristine, Catharanthus roseus has been intensively studied for biosynthesis of several terpene indole alkaloids (TIAs). Due to their low abundance in plant tissues at a simultaneously high demand, modes of production alternative to conventional extraction are mandatory. Plant cell fermentation might become one of these alternatives, yet decades of research have shown limited success to certain product classes, leading to the question, how to preserve the intrinsic ability to produce TIAs (metabolic competence) in cell culture? We used the strategy to use the developmental potency of mature embryos to generate such strains. Two cell strains (C1and C4) from seeds of Catharanthus roseus were found not only to differ morphologically, but also in their metabolic competence. This differential competence became manifest under phytohormone elicitation, but also upon feeding with alkaloid pathway precursors. The more active strain C4 formed larger cell aggregates and was endowed with longer mitochondria. These cellular features were accompanied by higher alkaloid accumulation in response to methyl jasmonate (MeJA) elicitation. The levels of catharanthine could be increased significantly, while the concurrent vindoline branch of the pathway was blocked, such that no bisindole alkaloids were detectable. By feeding vindoline to MeJA elicited C4 cells, vincristine became detectable; however, only to marginal amounts. In conclusion, these results show that cultured cells are not just “de-differentiated”, but can differ in metabolic competence. In addition to elicitation, and precursor feeding, the cellular properties of the “biomatter” are highly relevant for the success of plant cell fermentation.


2021 ◽  
Vol 22 (12) ◽  
pp. 6178
Author(s):  
Navita N. Lopez ◽  
Rajiv Rangan ◽  
Abbot F. Clark ◽  
Tara Tovar-Vidales

Glaucoma is a group of optic neuropathies that leads to irreversible vision loss. The optic nerve head (ONH) is the site of initial optic nerve damage in glaucoma. ONH-derived lamina cribrosa (LC) cells synthesize extracellular matrix (ECM) proteins; however, these cells are adversely affected in glaucoma and cause detrimental changes to the ONH. LC cells respond to mechanical strain by increasing the profibrotic cytokine transforming growth factor-beta 2 (TGFβ2) and ECM proteins. Moreover, microRNAs (miRNAs or miR) regulate ECM gene expression in different fibrotic diseases, including glaucoma. A delicate homeostatic balance between profibrotic and anti-fibrotic miRNAs may contribute to the remodeling of ONH. This study aimed to determine whether modulation of miRNAs alters the expression of ECM in human LC cells. Primary human normal and glaucoma LC cells were grown to confluency and treated with or without TGFβ2 for 24 h. Differences in expression of miRNAs were analyzed using miRNA qPCR arrays. miRNA PCR arrays showed that the miR-29 family was significantly decreased in glaucomatous LC cell strains compared to age-matched controls. TGFβ2 treatment downregulated the expression of multiple miRNAs, including miR-29c-3p, compared to controls in LC cells. LC cells transfected with miR-29c-3p mimics or inhibitors modulated collagen expression.


2021 ◽  
Author(s):  
amanda Makha Bifani ◽  
Hwee Cheng Tan ◽  
Milly M Choy ◽  
Eng Eong Ooi

The expansion of the geographic footprint of dengue viruses (DENVs) and their mosquito vectors have affected more than half of the global population, including older adults who appear to show elevated risk of severe dengue. Despite this epidemiological trend, how age and senescence impact virus-host interactions involved in dengue pathogenesis to increase the risk of severe dengue is poorly understood. Herein, we show that conversion of diploid cells with finite lifespan into iPSCs followed by differentiation back into cell strain can be an approach to derive genetically identical cells at different stages of senescence to study virus and aging host interactions. Our findings show that cellular senescence impact the host response to infection and the ensuing outcome. We suggest iPSC-derive cell strains as a potentially useful technical approach to genetically controlled host-virus interaction studies to understand how aging impact viral pathogenesis.


Author(s):  
G. Rossini ◽  
A. Caimi ◽  
A. Redaelli ◽  
E. Votta

AbstractA Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range ($$0.36-0.87$$ 0.36 - 0.87 ) with a strong correlation with the organ length-scale radial strain ($$R^{2}= 0.95$$ R 2 = 0.95 ); conversely, circumferential cell strains spanned a very narrow range ($$0.75-0.88$$ 0.75 - 0.88 ) showing no correlation with the circumferential strain at the organ level ($$R^{2}= 0.02$$ R 2 = 0.02 ). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 146
Author(s):  
Ryota Takeuchi ◽  
Mitsuru Jimbo ◽  
Fumika Tanimoto ◽  
Mariko Iijima ◽  
Hiroshi Yamashita ◽  
...  

Many corals establish symbiosis with Symbiodiniaceae cells from surrounding environments, but very few Symbiodiniaceae cells exist in the water column. Given that the N-acetyl-d-glucosamine-binding lectin ActL attracts Symbiodiniaceae cells, we hypothesized that corals must attract Symbiodiniaceae cells using ActL to acquire them. Anti-ActL antibody inhibited acquisition of Symbiodiniaceae cells, and rearing seawater for juvenile Acropora tenuis contained ActL, suggesting that juvenile A. tenuis discharge ActL to attract these cells. Among eight Symbiodiniaceae cultured strains, ActL attracted NBRC102920 (Symbiodinium tridacnidorum) most strongly followed by CS-161 (Symbiodinium tridacnidorum), CCMP2556 (Durusdinium trenchii), and CCMP1633 (Breviolum sp.); however, it did not attract GTP-A6-Sy (Symbiodinium natans), CCMP421 (Effrenium voratum), FKM0207 (Fugacium sp.), and CS-156 (Fugacium sp.). Juvenile polyps of A. tenuis acquired limited Symbiodiniaceae cell strains, and the number of acquired Symbiodiniaceae cells in a polyp also differed from each other. The number of Symbiodiniaceae cells acquired by juvenile polyps of A. tenuis was correlated with the ActL chemotactic activity. Thus, ActL could be used to attract select Symbiodiniaceae cells and help Symbiodiniaceae cell acquisition in juvenile polyps of A. tenuis, facilitating establishment of symbiosis between A. tenuis and Symbiodiniaceae cells.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Anna E. Woźna ◽  
Adam Junka ◽  
Viktoria W. Hoppe

Purpose: In recent years, it has become extremely important to search for more and more natural and biocompatible materials that allow for the reconstruction of natural tissues with as few side effects as possible. The aim of the present paper is to define mechanical properties such as compressive stress and Young’s Modulus and to estimate the ability of human bone cell strains to form biofilm on bioresorbable composites manufactured of polylactide and poly-l-lactide (PLA and PLLA) and hydroxyapatite and tricalcium phosphate (HA and β-TCP) with the use of Selective Laser Sintering (SLS) method. Methods: Microbiological tests were conducted on three variants of solid specimen made with additive laser technology. Samples with different chemical compositions were made with appropriate manufacturing parameters ensuring stability of both composite ingredients. Microbiological in vitro tests helped to determine cytotoxicity of specific samples toward bone cells. Results: The results obtained indicate significantly increased ability of osteoblasts to form colonies on the surface of materials with higher content of hydroxyapatite ceramics compared to surfaces of lower hydroxyapatite content. Conclusions: The data provided can be useful for future applications of the SLS technology in production of bioresorbable PLA/PLLA/HA/β-TCP medical implants.


Sign in / Sign up

Export Citation Format

Share Document