average flux
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 655 ◽  
pp. A52
Author(s):  
F. Coti Zelati ◽  
B. Hugo ◽  
D. F. Torres ◽  
D. de Martino ◽  
A. Papitto ◽  
...  

We present the results of simultaneous observations of the transitional millisecond pulsar (tMSP) candidate CXOU J110926.4–650224 with the XMM-Newton satellite and the MeerKAT telescope. The source was found at an average X-ray luminosity of LX ≃ 7 × 1033 erg s−1 over the 0.3−10 keV band (assuming a distance of 4 kpc) and displayed a peculiar variability pattern in the X-ray emission, switching between high, low and flaring modes on timescales of tens of seconds. A radio counterpart was detected at a significance of 7.9σ with an average flux density of ≃33 μJy at 1.28 GHz. It showed variability over the course of hours and emitted a ≃10-min long flare just a few minutes after a brief sequence of multiple X-ray flares. No clear evidence for a significant correlated or anticorrelated variability pattern was found between the X-ray and radio emissions over timescales of tens of minutes and longer. CXOU J110926.4–650224 was undetected at higher radio frequencies in subsequent observations performed with the Australia Telescope Compact Array, when the source was still in the same X-ray sub-luminous state observed before, down to a flux density upper limit of 15 μJy at 7.25 GHz (at 3σ). We compare the radio emission properties of CXOU J110926.4–650224 with those observed in known and candidate tMSPs and discuss physical scenarios that may account for its persistent and flaring radio emissions.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3499
Author(s):  
Ahmad Abdullah ◽  
Abdulaziz Al-Qahatani ◽  
Mohammed Alquraish ◽  
Colin Baily ◽  
Salah El-Mofty ◽  
...  

In recent decades, the fabrication of composite membranes using nanoparticles has played a vital role in membrane distillation (MD) technique. It could make available membranes with superior characteristics as excellent candidates for MD technique. The most well-known obstacles regarding the MD method are the low productivity and high cost. Thus, fabricating membranes with superior properties is a significant challenge. In the current study, a composite membrane has been fabricated using 0.25, 0.5, and 0.75 weight percent (wt.%) of graphene nanoparticles (GNPs) with polystyrene (PS) as a base polymer and characterized using SEM, FTIR, and contact angle. The characterization results prove the successful fabrication using electrospinning and the validity of the fabricated membranes to be applied to direct contact membrane distillation (DCMD). In addition, a DCMD experimental setup has been designed to examine the performance of the fabricated membranes and compare the performance of blank PS with composite PS/GNPs membranes. The results show that all fabricated membranes produced an approximately similar average flux of about 10 kg/m2 h, while the highest GNPs wt.% showed the highest salt rejection. Accordingly, this composite membrane has been examined at different operating parameters and showed stable performance. Moreover, feed temperature and the rate of flow have a positive impact on the overall performance of the DCMD.


Author(s):  
Ikuru Iwata ◽  
Marcin Sawicki ◽  
Akio K Inoue ◽  
Masayuki Akiyama ◽  
Genoveva Micheva ◽  
...  

Abstract We use deep and wide imaging data from the CFHT Large Area U-band Deep Survey (CLAUDS) and the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) to constrain the ionizing radiation (Lyman Continuum; LyC) escape fraction from AGNs at z ∼ 3–4. For 94 AGNs with spectroscopic redshifts at 3.3 < z < 4.0, we use their U-band / i-band flux ratios to estimate LyC transmission of individual AGNs. The distribution of their LyC transmission shows values lower than the range of LyC transmission values for IGM of the same redshift range, which suggests that LyC escape fraction of AGNs at z > 3.3 is considerably lower than unity in most cases. We do not find any trend in LyC transmission values depending on their UV luminosities. Based on the photometry of stacked images we find the average flux ratio of LyC and non-ionizing UV photons escaping from the objects (fLyC/fUV)out = 0.182 ± 0.043 for AGNs at 3.3 < z < 3.6, which corresponds to LyC escape fraction fesc = 0.303 ± 0.072 if we assume a fiducial intrinsic SED of AGN. Based on the estimated LyC escape fraction and the UV luminosity function of AGNs, we argue that UV-selected AGNs’ contribution to the LyC emissivity at the epoch is minor, although the size of their contribution largely depends on the shape of the UV luminosity function.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 245
Author(s):  
Yangjie Li ◽  
Dongqi Wang ◽  
Zhenlou Chen ◽  
Jie Chen ◽  
Hong Hu ◽  
...  

Methane (CH4) emissions from estuarine wetlands were proved to be influenced by tide movement and inundation conditions notably in many previous studies. Although there have been several researches focusing on the seasonal or annual CH4 emissions, the short-term CH4 emissions during the tide cycles were rarely studied up to now in this area. In order to investigate the CH4 emission pattern during a tide cycle in Yangtze Estuary salt marshes, frequent fixed-point observations of methane flux were carried out using the in-situ static closed chamber technique. The results indicated that the daily average CH4 fluxes varied from 0.68 mgCH4·m−2·h−1 to 4.22 mgCH4·m−2·h−1 with the average flux reaching 1.78 mgCH4·m−2·h−1 from small tide to spring tide in summer. CH4 fluxes did not show consistent variation with both tide levels and inundation time but increased steadily during almost the whole research period. By Pearson correlation analysis, CH4 fluxes were not correlated with both tide levels (R = −0.014, p = 0.979) and solar radiation (R = 0.024, p = 0.865), but significantly correlated with ambient temperature. It is temperature rather than the tide level mainly controlling CH4 emissions during the tide cycles. Besides, CH4 fluxes also showed no significant correlation with the underground pore-water CH4 concentrations, indicating that plant-mediated transport played a more important role in CH4 fluxes compared with its production and consumption.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Hong Wang ◽  
Xinyu Li ◽  
Jin Wang

Abstract We propose a new scenario of nonequilibirum multiverse. We quantified the potential landscape and the flux landscape for the multiverse. The potential landscape quantifies the weight of each universe. When the terminal vacuum with zero (flat) or negative cosmological constant (AdS) have a chance to tunnel back to the normal universes with positive cosmological constant (dS) through the bounce suggested by the recent studies, the detailed balance of the populations of the multiverse can be broken. We found that the degree of the detailed balance breaking can be quantified by the underlying average flux and associated flux landscape, which gives arise to the dynamical origin of irreversibility and the time arrow of the multiverse. We also showed that the steady state of the multiverse is maintained by the thermodynamic cost quantified by the entropy production rate which is associated to the flux. This gives arise to thermodynamic origin of time irreversibility. On the other hand, we show that the evolution dynamics of the multiverse is determined by both the potential landscape and flux landscape. While the potential landscape determines the weight of the universes in the multiverse and attracts the multiverse to the steady state basins, the flux landscape provides the cycles or loops associating certain universes together. We show that terminal vacuum universes can have dominant weights or lowest potentials giving arise to a funnel shaped potential landscape, while terminal vacuum universes together with other normal universes including ours can form dominant cycles giving arise to a funnel shaped cycle flux landscape. This indicates that even our universe may not be distinct from others based on the probability measure, it may lie in the dominant cycle(s), leading to higher chance of being found. This may provide an additional way beyond the anthropic principle for identifying our universe.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana Zapata ◽  
Nithya Rajan ◽  
Jake Mowrer ◽  
Kenneth Casey ◽  
Ronnie Schnell ◽  
...  

AbstractSoil respiration from agricultural soils is a major anthropogenic source of CO2 to the atmosphere. With-in season emission of soil CO2 from croplands are affected by changes in weather, tillage, plant row spacing, and plant growth stage. Tillage involves physical turning of soils which accelerate residue decomposition and CO2 emission. No-tillage lacks soil disturbance and residues undergo slower decomposition at the surface. In this study, we compared with-in season soil conditions (temperature and moisture) and soil respiration from two major crops (soybean and winter wheat) by making high temporal frequency measurements using automated chambers at half-hourly intervals. The experiment lasted for 179 days. Total number of measurements made from conventional and no-tillage soybean and winter wheat plots were 6480 and 4456, respectively. Average flux after the winter-dormancy period of wheat was 37% higher in tilled soil compared to no-till soil. However, average flux during the soybean growing season was 8% lower in conventional till compared to no-till soil. This differential response of soil respiration in wheat and soybean was primarily due to tillage-induced changes in surface characteristics (residue cover) and soil environmental conditions (soil temperature and soil moisture). Results from this study can help elucidate relationships for modeling and assessment of field-scale soil CO2 emissions from dryland wheat and soybean crops grown in sub-tropics.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 35279-35286
Author(s):  
Hua Kuang ◽  
Fenglan Yang ◽  
Meiting Wang ◽  
Guanghan Peng ◽  
Xingli Li

Author(s):  
Antonia Vojtekova ◽  
Maggie Lieu ◽  
Ivan Valtchanov ◽  
Bruno Altieri ◽  
Lyndsay Old ◽  
...  

Abstract Astronomical images are essential for exploring and understanding the universe. Optical telescopes capable of deep observations, such as the Hubble Space Telescope, are heavily oversubscribed in the Astronomical Community. Images also often contain additive noise, which makes de-noising a mandatory step in post-processing the data before further data analysis. In order to maximise the efficiency and information gain in the post-processing of astronomical imaging, we turn to machine learning. We propose Astro U-net, a convolutional neural network for image de-noising and enhancement. For a proof-of-concept, we use Hubble space telescope images from WFC3 instrument UVIS with F555W and F606W filters. Our network is able to produce images with noise characteristics as if they are obtained with twice the exposure time, and with minimum bias or information loss. From these images, we are able to recover $95.9\%$ of stars with an average flux error of $2.26\%$. Furthermore the images have, on average, 1.63 times higher signal-to-noise ratio than the input noisy images, equivalent to the stacking of at least 3 input images, which means a significant reduction in the telescope time needed for future astronomical imaging campaigns.


2020 ◽  
Author(s):  
Zhaohui Chen ◽  
Parvadha Suntharalingam ◽  
Andrew J. Watson ◽  
Ute Schuster ◽  
Jiang Zhu ◽  
...  

Abstract. We present new estimates of the regional North Atlantic (15° N–80° N) CO2 flux for the 2000–2017 period using atmospheric CO2 measurements from the NOAA long term surface site network in combination with an atmospheric data assimilation system (GEOSChem–LETKF). We also assess the sensitivity of flux estimates to the representation of the prior ocean flux distribution and to the associated specification of prior flux uncertainty, including a specification that is dependent on the agreement among the multiple representations of the prior ocean flux. Long term average flux estimates for the 2000–2017 period are −0.26±0.04 PgC y−1 for the subtropical basin (15° N–50° N), and −0.25±0.04 PgC y−1 for the subpolar region (50° N–80° N, west of 20° E). Our basin–scale estimates of the amplitude of interannual variability (IAV) are 0.037±0.006 PgC y−1 and 0.025±0.009 PgC y−1 for subtropical and subpolar regions respectively. We find a statistically significant trend in carbon uptake for the subtropical North Atlantic of −0.062±0.009 PgC y−1 decade−1 over this period.


Sign in / Sign up

Export Citation Format

Share Document