platinum group metal
Recently Published Documents


TOTAL DOCUMENTS

540
(FIVE YEARS 148)

H-INDEX

52
(FIVE YEARS 12)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Yonis Fornazier Filho ◽  
Ana Caroliny Carvalho da Cruz ◽  
Rolando Pedicini ◽  
José Ricardo Cezar Salgado ◽  
Rodrigo Vieira Rodrigues ◽  
...  

An efficient ethanol oxidation reaction (EOR) is required to enhance energy production in alcohol-based fuel cells. The use of bimetallic catalysts promises decreasing reliance on platinum group metal (PGM) electrocatalysts by minimizing the use of these expensive materials in the overall electrocatalyst composition. In this article, an alternative method of bimetallic electrocatalyst synthesis based on the use of polymeric precursors is explored. PdAg/C electrocatalysts were synthesized by thermal decomposition of polymeric precursors and used as the anode electrocatalyst for EOR. Different compositions, including pristine Pd/C and Ag/C, as well as bimetallic Pd80Ag20/C, and Pd60Ag40/C electrocatalysts, were evaluated. Synthesized catalysts were characterized, and electrochemical activity evaluated. X-ray diffraction showed a notable change at diffraction peak values for Pd80Ag20/C and Pd60Ag40/C electrocatalysts, suggesting alloying (solid solution) and smaller crystallite sizes for Pd60Ag40/C. In a thermogravimetric analysis, the electrocatalyst Pd60Ag40/C presented changes in the profile of the curves compared to the other electrocatalysts. In the cyclic voltammetry results for EOR in alkaline medium, Pd60Ag40/C presented a more negative onset potential, a higher current density at the oxidation peak, and a larger electrically active area. Chronoamperometry tests indicated a lower poisoning rate for Pd60Ag40/C, a fact also observed in the CO-stripping voltammetry analysis due to its low onset potential. As the best performing electrocatalyst, Pd60Ag40/C has a lower mass of Pd (a noble and expensive metal) in its composition. It can be inferred that this bimetallic composition can contribute to decreasing the amount of Pd required while increasing the fuel cell performance and expected life. PdAg-type electrocatalysts can provide an economically feasible alternative to pure PGM-electrocatalysts for use as the anode in EOR in fuel cells.


2022 ◽  
Author(s):  
Shinta Watanabe ◽  
Yusuke Inaba ◽  
Miki Harigai ◽  
Kenji Takeshita ◽  
Jun Onoe

Abstract We have examined the uptake mechanisms of platinum-group-metals (PGMs) and molybdenum (Mo) ions into PBNPs in a nitric acid solution for 24-h sorption test, using inductively coupled plasma atomic emission spectroscopy, powder XRD, and UV-Vis-NIR spectroscopy in combination with first-principles calculations, and revealed that the Ru4+ and Pd2+ ions are incorporated into PBNPs by substitution with Fe3+ and Fe2+ ions of the PB framework, respectively, whereas the Rh3+ ion is incorporated into PBNPs by substitution mainly with Fe3+ and minorly with Fe2+ ion, and Mo6+ ion is incorporated into PBNPs by substitution with both Fe2+ and Fe3+ ions, with maintaining the crystal structure before and after the sorption test. Assuming that the amount of Fe elusion is equal to that of PGMs/Mo substitution, the substitution efficiency is estimated to be 39.0% for Ru, 47.8% for Rh, 87% for Pd, and 17.1% for Mo6+. This implies that 0.13 g of Ru, 0.16 g of Rh, 0.30 g of Pd, and 0.107 g of Mo can be recovered by using 1g PBNPs with a chemical form of KFe(III)[Fe(II)(CN)6].


2022 ◽  
Author(s):  
Jin Wang ◽  
Chong Yin ◽  
Wenjia Han ◽  
Yaohong Ma ◽  
Yanchao Yin ◽  
...  

The platinum group metals (PGM, Pd, Pt, Ir, etc.) possess unique chemical and physical properties, the properties often vary dramatically with their size, morphology, crystal structure, phase and composition. However,...


2022 ◽  
Author(s):  
Shiyang Liu ◽  
Quentin Meyer ◽  
Yibing Li ◽  
Tingwen Zhao ◽  
Zhen Su ◽  
...  

Replacing Pt-based catalysts with cost-effective, highly efficient, and durable platinum group metal-free catalysts for oxygen reduction reaction (ORR) is crucial for commercializing hydrogen fuel cells. Herein, we present a highly...


2021 ◽  
Author(s):  
Yu-Ping Ku ◽  
Konrad Ehelebe ◽  
Markus Bierling ◽  
Florian Speck ◽  
Dominik Seeberger ◽  
...  

Abstract The electrochemical activity of modern Fe-N-C electrocatalysts in alkaline media is on par with that of platinum. For successful application in fuel cells, however, also high durability and longevity must be demonstrated. Currently, design and synthesis of simultaneously active and stable platinum group metal-free electrocatalysts is hindered by a limited understanding of Fe-N-C degradation, especially under operando conditions. In this work, using a gas diffusion electrode half-cell coupled with inductively coupled plasma mass spectrometry setup, Fe dissolution is studied under more realistic conditions, i.e. real catalyst layer and current densities up to 125 mA·cm-2. Varying the rate of oxygen reduction reaction, we show a remarkable correlation between Faradaic electrode charge and Fe dissolution. This finding is rationalized assuming that oxygen reduction and Fe dissolution reactions are interlinked, likely through a common intermediate formed during the Fe3+/Fe2+ redox transitions in coordinated Fe cations. Moreover, such linear correlation allows an introduction and use of a simple metric (stability number). Hence, in the current work, a powerful tool for a more applied stability screening of different electrocatalysts is introduced, which allows on the one hand fast performance investigations under more realistic conditions, and on the other hand more advanced mechanistic understanding of Fe-N-C degradation in catalyst layers.


Author(s):  
Agate Martin ◽  
Patrick Trinke ◽  
Chuyen Van Pham ◽  
Melanie Bühler ◽  
Markus Bierling ◽  
...  

Abstract Altogether five platinum group metal (PGM) and PGM-free cathode catalysts were investigated in full PEM water electrolysis cells regarding their polarisation behaviour and their hydrogen and oxygen recombination properties. It was shown that the recombination activity of permeated oxygen and evolved hydrogen within the cathodic catalyst layer correlates with the activity of the oxygen reduction reaction (ORR) which was determined ex situ with linear sweep voltammetry. We found that the investigated PGM-free cathode catalysts had a low activity for the ORR resulting in higher measurable oxygen in hydrogen volume fractions compared to the PGM catalysts, which are more active for the ORR. Out of the three investigated PGM-free catalysts, only one commercially available material based on a Ti suboxide showed a similar good polarisation behaviour as the state of the art cathode catalyst platinum, while its recombination activity was the lowest of all catalysts. In addition to the recombination of hydrogen and oxygen on the electrocatalysts, we found that the prevalent carbon-based cathodic porous transport layers (PTL) also offer catalytically active recombination sites. In comparison to an inactive PTL, the measurable oxygen flux using carbon-based PTLs was lower and the recombination was enhanced by microporous coatings with high surface areas.


Sign in / Sign up

Export Citation Format

Share Document