pebbling number
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Nopparat Pleanmani ◽  
Somnuek Worawiset

Let [Formula: see text] be a connected graph. For a configuration of pebbles on the vertices of [Formula: see text], a pebbling move on [Formula: see text] is the process of taking two pebbles from a vertex and adding one of them on an adjacent vertex. The pebbling number of [Formula: see text], denoted by [Formula: see text], is the least number of pebbles to guarantee that for any configuration of pebbles on [Formula: see text] and arbitrary vertex [Formula: see text], there is a sequence of pebbling movement that places at least one pebble on [Formula: see text]. The graph [Formula: see text] is said to be of Class 0 if its pebbling number equals its order. For a Class [Formula: see text] connected graph [Formula: see text], we improve a recent upper bound for [Formula: see text] in terms of [Formula: see text].


2021 ◽  
Vol 1770 (1) ◽  
pp. 012064
Author(s):  
R. Prabha ◽  
B. Sandhiya
Keyword(s):  

2020 ◽  
Vol 12 (05) ◽  
pp. 2050071
Author(s):  
A. Lourdusamy ◽  
T. Mathivanan

The [Formula: see text]-pebbling number, [Formula: see text], of a connected graph [Formula: see text], is the smallest positive integer such that from every placement of [Formula: see text] pebbles, [Formula: see text] pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. A graph [Formula: see text] satisfies the [Formula: see text]-pebbling property if [Formula: see text] pebbles can be moved to any specified vertex when the total starting number of pebbles is [Formula: see text], where [Formula: see text] is the number of vertices with at least one pebble. We show that the cycle [Formula: see text] satisfies the [Formula: see text]-pebbling property. Herscovici conjectured that for any connected graphs [Formula: see text] and [Formula: see text], [Formula: see text]. We prove Herscovici’s conjecture is true, when [Formula: see text] is an even cycle and for variety of graphs [Formula: see text] which satisfy the [Formula: see text]-pebbling property.


2020 ◽  
Vol 8 ◽  
Author(s):  
Zheng-Jiang Xia ◽  
Zhen-Mu Hong
Keyword(s):  

2020 ◽  
Vol 36 (3) ◽  
pp. 803-829
Author(s):  
Ervin Győri ◽  
Gyula Y. Katona ◽  
László F. Papp

2020 ◽  
Vol 18 (1) ◽  
pp. 87-92
Author(s):  
Yueqing Li ◽  
Yongsheng Ye

Abstract A pebbling move on a graph G consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graph G, denoted by f(G), is the least n such that any distribution of n pebbles on G allows one pebble to be moved to any specified vertex by a sequence of pebbling moves. In this paper, we determine the 2-pebbling property of squares of paths and Graham’s conjecture on $\begin{array}{} P_{2n}^2 \end{array} $.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950068
Author(s):  
Nopparat Pleanmani

A graph pebbling is a network optimization model for the transmission of consumable resources. A pebbling move on a connected graph [Formula: see text] is the process of removing two pebbles from a vertex and placing one of them on an adjacent vertex after configuration of a fixed number of pebbles on the vertex set of [Formula: see text]. The pebbling number of [Formula: see text], denoted by [Formula: see text], is defined to be the least number of pebbles to guarantee that for any configuration of pebbles on [Formula: see text] and arbitrary vertex [Formula: see text], there is a sequence of pebbling movement that places at least one pebble on [Formula: see text]. For connected graphs [Formula: see text] and [Formula: see text], Graham’s conjecture asserted that [Formula: see text]. In this paper, we show that such conjecture holds when [Formula: see text] is a complete bipartite graph with sufficiently large order in terms of [Formula: see text] and the order of [Formula: see text].


2019 ◽  
Vol 17 (1) ◽  
pp. 582-587
Author(s):  
Ze-Tu Gao ◽  
Jian-Hua Yin

Abstract Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The optimal pebbling number of G, denoted by πopt(G), is the smallest number m such that for some distribution of m pebbles on G, one pebble can be moved to any vertex of G by a sequence of pebbling moves. Let Pk be the path on k vertices. Snevily defined the n–k spindle graph as follows: take n copies of Pk and two extra vertices x and y, and then join the left endpoint (respectively, the right endpoint) of each Pk to x (respectively, y), the resulting graph is denoted by S(n, k), and called the n–k spindle graph. In this paper, we determine the optimal pebbling number for spindle graphs.


2019 ◽  
Vol 342 (7) ◽  
pp. 2148-2157 ◽  
Author(s):  
Ervin Győri ◽  
Gyula Y. Katona ◽  
László F. Papp ◽  
Casey Tompkins

Sign in / Sign up

Export Citation Format

Share Document