synaptonemal complex protein
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 7)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sumit Sandhu ◽  
Ieng F. Sou ◽  
Jill E. Hunter ◽  
Lucy Salmon ◽  
Caroline L. Wilson ◽  
...  

AbstractThe synaptonemal complex (SC) is a supramolecular protein scaffold that mediates chromosome synapsis and facilitates crossing over during meiosis. In mammals, SC proteins are generally assumed to have no other function. Here, we show that SC protein TEX12 also localises to centrosomes during meiosis independently of chromosome synapsis. In somatic cells, ectopically expressed TEX12 similarly localises to centrosomes, where it is associated with centrosome amplification, a pathology correlated with cancer development. Indeed, TEX12 is identified as a cancer-testis antigen and proliferation of some cancer cells is TEX12-dependent. Moreover, somatic expression of TEX12 is aberrantly activated via retinoic acid signalling, which is commonly disregulated in cancer. Structure-function analysis reveals that phosphorylation of TEX12 on tyrosine 48 is important for centrosome amplification but not for recruitment of TEX12 to centrosomes. We conclude that TEX12 normally localises to meiotic centrosomes, but its misexpression in somatic cells can contribute to pathological amplification and dysfunction of centrosomes in cancers.


2021 ◽  
Vol 22 (16) ◽  
pp. 8839
Author(s):  
Se Jin Oh ◽  
Kyung Hee Noh ◽  
Kwon-Ho Song ◽  
Tae Woo Kim

Synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, has been implicated in cancer progression, and therapeutic resistance, as well as cancer stem cell (CSC)-like properties. Previously, we demonstrated that SCP3 promotes these aggressive phenotypes via hyperactivation of the AKT signaling pathway; however, the underlying mechanisms responsible for SCP3-induced AKT activation remain to be elucidated. In this study, we demonstrated that the EGF-EGFR axis is the primary route through which SCP3 acts to activate AKT signaling. SCP3 triggers the EGFR-AKT pathway through transcriptional activation of EGF. Notably, neutralization of secreted EGF by its specific monoclonal antibody reversed SCP3-mediated aggressive phenotypes with a concomitant reversal of EGFR-AKT activation. In an effort to elucidate the molecular mechanisms underlying SCP3-induced transcriptional activation of EGF, we identified Jun activation domain-binding protein 1 (JAB1) as a binding partner of SCP3 using a yeast two-hybrid (Y2H) assay system, and we demonstrated that SCP3 induces EGF transcription through physical interaction with JAB1. Thus, our findings establish a firm molecular link among SCP3, EGFR, and AKT by identifying the novel roles of SCP3 in transcriptional regulation. We believe that these findings hold important implications for controlling SCP3high therapeutic-refractory cancer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Silvia González-Sanz ◽  
Odei Barreñada ◽  
Eduardo Rial ◽  
Miguel A. Brieño-Enriquez ◽  
Jesús del Mazo

Abstract Vinclozolin is a pesticide with antiandrogenic activity as an endocrine disruptor compound. Its effects upon the progression of primordial follicles were assessed in cultures of mouse fetal ovaries from the onset of meiotic differentiation of germ cells (13.5 days post coitum) and from both in vivo exposed mice and in vitro exposed ovaries. Exposure of ovaries to vinclozolin—at in vitro dosages ranging from 10 to 200 μM and in 3D ex vivo culture following in vivo exposure to 50 mg/kg bw/day—showed delays in meiocyte differentiation and in follicle growth, even at the lowest in vitro dose exposure. Immunofluorescent analysis showed the presence of the proteins MSY2 and NOBOX in the primary follicles but no difference in the level of protein signals or in the number of follicles in relation to treatment. However, assessing the cytological differentiation of germ cells by detecting the synaptonemal complex protein SYCP3, the exposure to vinclozolin delayed meiotic differentiation from both in vitro- and in vivo-exposed ovaries. These effects were concomitant with changes in the energy metabolism, detected as a relative increase of glycolytic metabolism in live-cell metabolic assays in exposed ovaries.


PLoS Genetics ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. e1008201 ◽  
Author(s):  
Karen Voelkel-Meiman ◽  
Shun-Yun Cheng ◽  
Melanie Parziale ◽  
Savannah J. Morehouse ◽  
Arden Feil ◽  
...  

2018 ◽  
Author(s):  
Karen Voelkel-Meiman ◽  
Shun-Yun Cheng ◽  
Melanie Parziale ◽  
Savannah J. Morehouse ◽  
Arden Feil ◽  
...  

AbstractAccurate chromosome segregation during meiosis relies on the prior establishment of at least one crossover recombination event between homologous chromosomes, which is often associated with the meiosis-specific MutSγ complex. The recombination intermediates that give rise to MutSγ interhomolog crossovers are embedded within a hallmark meiotic prophase structure called the synaptonemal complex (SC), but the mechanisms that coordinate the processes of SC assembly (synapsis) and crossover recombination remain poorly understood. Among known central region building blocks of the budding yeast SC, the Zip1 protein is unique for its SC-independent role in promoting MutSγ crossovers. Here we report that adjacent regions within Zip1’s unstructured N terminus encompass its crossover and SC assembly functions. We previously showed that deletion of Zip1 residues 21-163 abolishes tripartite SC assembly and prevents the robust SUMOylation of the SC central element component, Ecm11, but allows excess MutSγ crossover recombination. We find the reciprocal phenotype when Zip1 residues 2-9 or 10-14 are deleted; in these mutants SC assembles and Ecm11 is hyperSUMOylated, but MutSγ crossovers are strongly diminished. Interestingly, Zip1 residues 2-9 or 2-14 are required for the normal localization of Zip3, a putative E3 SUMO ligase and pro-MutSγ crossover factor, to Zip1 polycomplex structures and to recombination initiation sites. By contrast, deletion of Zip1 residues 15-20 does not detectably prevent Zip3’s localization at Zip1 polycomplex and supports some MutSγ crossing over but prevents normal SC assembly and robust Ecm11 SUMOylation. These results highlight distinct N terminal regions that are differentially critical for Zip1’s roles in crossover recombination and SC assembly; we speculate that the adjacency of these regions enables Zip1 to serve as a liaison, facilitating crosstalk between the two processes by bringing crossover recombination and synapsis factors in close proximity to one another.


Sign in / Sign up

Export Citation Format

Share Document