mitochondrial alterations
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 62)

H-INDEX

38
(FIVE YEARS 6)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristina Bečanović ◽  
Muhammad Asghar ◽  
Izabella Gadawska ◽  
Shiny Sachdeva ◽  
David Walker ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3150
Author(s):  
Marc Beltrà ◽  
Fabrizio Pin ◽  
Riccardo Ballarò ◽  
Paola Costelli ◽  
Fabio Penna

Cancer cachexia is a frequently neglected debilitating syndrome that, beyond representing a primary cause of death and cancer therapy failure, negatively impacts on patients’ quality of life. Given the complexity of its multisystemic pathogenesis, affecting several organs beyond the skeletal muscle, defining an effective therapeutic approach has failed so far. Revamped attention of the scientific community working on cancer cachexia has focused on mitochondrial alterations occurring in the skeletal muscle as potential triggers of the complex metabolic derangements, eventually leading to hypercatabolism and tissue wasting. Mitochondrial dysfunction may be simplistically viewed as a cause of energy failure, thus inducing protein catabolism as a compensatory mechanism; however, other peculiar cachexia features may depend on mitochondria. On the one side, chemotherapy also impacts on muscle mitochondrial function while, on the other side, muscle-impaired regeneration may result from insufficient energy production from damaged mitochondria. Boosting mitochondrial function could thus improve the energetic status and chemotherapy tolerance, and relieve the myogenic process in cancer cachexia. In the present work, a focused review of the available literature on mitochondrial dysfunction in cancer cachexia is presented along with preliminary data dissecting the potential role of stimulating mitochondrial biogenesis via PGC-1α overexpression in distinct aspects of cancer-induced muscle wasting.


Author(s):  
DN Voronkov ◽  
AV Stavrovskaya ◽  
AS Gushchina ◽  
AS Olshansky

It is assumed that dysfunction of tanycytes could be one of the components of pathogenesis of both Alzheimer disease and type 2 diabetes mellitus. The study was aimed to assess alterations in the tanycyte morphology in the Alzheimer disease model. The 3 mg/kg streptozotocin dose was injected in the lateral ventricles of Wistar rats in order to model the Alzheimer disease. Alterations in hypothalamic tanycytes were assessed 2 weeks, 4 weeks, 3 months and 6 months after administration of the toxin. Immunohistochemistry was used to identify the protein markers of tanycytes (vimentin, nestin), astrocytes (GFAP, glutamine synthetase) and neurons (HuC/D), as well as to assess cell proliferation (with the use of Ki67 protein) and mitochondrial alterations (mitochondrial complex IV, PGC1a). Administration of streptozotocin lead to β-amyloid accumulation in hypothalamus and ventricular enlargement (p < 0.001). Streptozotocin damaged both α1/α2 tanycytes and β1 tanycytes. The intensity of vimentin staining in α1/α2 tanycytes decreased by week 4 (p = 0.003), and in β1 tanycytes it decreased in three months (p < 0.001). The same trend was observed for nestin. The number of Ki67+ nuclei decreased (p < 0.05), and the expression of proteins associated with mitochondria changed. The density of hypothalamic tanycytes decreased by week 4 after administration of the toxin. Moreover, astrocyte activation was revealed. However, no prominent damage to both astrocytes and neurons was observed within four weeks after administration of streptozotocin. The revealed high tanycyte vulnerability to streptozotocin is in line with the hypothesis of the role of damage to hypothalamic structures in both local and systemic metabolic disorders occurring in the Alzheimer disease models.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Can Huang ◽  
Patricia Santofimia-Castaño ◽  
Xi Liu ◽  
Yi Xia ◽  
Ling Peng ◽  
...  

AbstractFerroptosis is an iron-dependent cell death characterized by the accumulation of hydroperoxided phospholipids. Here, we report that the NUPR1 inhibitor ZZW-115 induces ROS accumulation followed by a ferroptotic cell death, which could be prevented by ferrostatin-1 (Fer-1) and ROS-scavenging agents. The ferroptotic activity can be improved by inhibiting antioxidant factors in pancreatic ductal adenocarcinoma (PDAC)- and hepatocellular carcinoma (HCC)-derived cells. In addition, ZZW-115-treatment increases the accumulation of hydroperoxided lipids in these cells. We also found that a loss of activity and strong deregulation of key enzymes involved in the GSH- and GPX-dependent antioxidant systems upon ZZW-115 treatment. These results have been validated in xenografts induced with PDAC- and HCC-derived cells in nude mice during the treatment with ZZW-115. More importantly, we demonstrate that ZZW-115-induced mitochondrial morphological changes, compatible with the ferroptotic process, as well as mitochondrial network disorganization and strong mitochondrial metabolic dysfunction, which are rescued by both Fer-1 and N-acetylcysteine (NAC). Of note, the expression of TFAM, a key regulator of mitochondrial biogenesis, is downregulated by ZZW-115. Forced expression of TFAM is able to rescue morphological and functional mitochondrial alterations, ROS production, and cell death induced by ZZW-115 or genetic inhibition of NUPR1. Altogether, these results demonstrate that the mitochondrial cell death mediated by NUPR1 inhibitor ZZW-115 is fully rescued by Fer-1 but also via TFAM complementation. In conclusion, TFAM could be considered as an antagonist of the ferroptotic cell death.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaoting Jin ◽  
Haiyi Yu ◽  
Ze Zhang ◽  
Tenglong Cui ◽  
Qi Wu ◽  
...  

Abstract Background Considering the inevitability for humans to be frequently exposed to nanoparticles (NPs), understanding the biosafety of NPs is important for rational usage. As an important part of the innate immune system, macrophages are widely distributed in vital tissues and are also a dominant cell type that engulfs particles. Mitochondria are one of the most sensitive organelles when macrophages are exposed to NPs. However, previous studies have mainly reported the mitochondrial response upon high-dose NP treatment. Herein, with gold nanoparticles (AuNPs) as a model, we investigated the mitochondrial alterations induced by NPs at a sublethal concentration. Results At a similar internal exposure dose, different AuNPs showed distinct degrees of effects on mitochondrial alterations, including reduced tubular mitochondria, damaged mitochondria, increased reactive oxygen species, and decreased adenosine triphosphate. Cluster analysis, two-way ANOVA, and multiple linear regression suggested that the surface properties of AuNPs were the dominant determinants of the mitochondrial response. Based on the correlation analysis, the mitochondrial response was increased with the change in zeta potential from negative to positive. The alterations in mitochondrial respiratory chain proteins indicated that complex V was an indicator of the mitochondrial response to low-dose NPs. Conclusion Our current study suggests potential hazards of modified AuNPs on mitochondria even under sublethal dose, indicates the possibility of surface modification in biocompatibility improvement, and provides a new way to better evaluation of nanomaterials biosafety.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2480
Author(s):  
Michaela M. Zrelski ◽  
Monika Kustermann ◽  
Lilli Winter

Plectin is a giant cytoskeletal crosslinker and intermediate filament stabilizing protein. Mutations in the human plectin gene (PLEC) cause several rare diseases that are grouped under the term plectinopathies. The most common disorder is autosomal recessive disease epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), which is characterized by skin blistering and progressive muscle weakness. Besides EBS-MD, PLEC mutations lead to EBS with nail dystrophy, EBS-MD with a myasthenic syndrome, EBS with pyloric atresia, limb-girdle muscular dystrophy type R17, or EBS-Ogna. In this review, we focus on the clinical and pathological manifestations caused by PLEC mutations on skeletal and cardiac muscle. Skeletal muscle biopsies from EBS-MD patients and plectin-deficient mice revealed severe dystrophic features with variation in fiber size, degenerative myofibrillar changes, mitochondrial alterations, and pathological desmin-positive protein aggregates. Ultrastructurally, PLEC mutations lead to a disorganization of myofibrils and sarcomeres, Z- and I-band alterations, autophagic vacuoles and cytoplasmic bodies, and misplaced and degenerating mitochondria. We also summarize a variety of genetically manipulated mouse and cell models, which are either plectin-deficient or that specifically lack a skeletal muscle-expressed plectin isoform. These models are powerful tools to study functional and molecular consequences of PLEC defects and their downstream effects on the skeletal muscle organization.


2021 ◽  
Author(s):  
Luca J Delfinis ◽  
Catherine A Bellissimo ◽  
Shivam Gandhi ◽  
Sara N DiBenedetto ◽  
Megan E Rosa-Caldwell ◽  
...  

Muscle weakness and wasting are defining features of cancer-induced cachexia. Mitochondrial stress occurs before atrophy in certain muscles, but distinct responses between muscles and across time remains unclear. We aimed to determine the time-dependent and muscle-specific responses to Colon-26 (C26) cancer-induced cachexia in mice. At 2 weeks post-inoculation, the presence of small tumours did not alter body or muscle mass but decreased force production in the quadriceps and diaphragm. Pyruvate-supported mitochondrial respiration was lower in quadriceps while mitochondrial H2O2 emission was elevated in diaphragm. At 4 weeks, large tumours corresponded to lower body mass, muscle mass, and cross-sectional area of fibers in quadriceps and diaphragm. Force production in quadriceps was unchanged but remained lower in diaphragm vs control. Mitochondrial respiration was increased while H2O2 emission was unchanged in both muscles vs control. Mitochondrial creatine sensitivity was compromised in quadriceps. These findings indicate muscle weakness precedes atrophy in quadriceps and diaphragm but is linked to heterogeneous mitochondrial alterations. Eventual muscle-specific restorations in force and bioenergetics highlight how the effects of cancer on one muscle do not predict the response in another muscle. Exploring heterogeneous responses of muscles to cancer may reveal new mechanisms underlying distinct sensitivities, or resistance, to cancer cachexia.


2021 ◽  
Vol 1 (1) ◽  
pp. 3-26
Author(s):  
Isabel Amador-Martínez ◽  
Estefani Yaquelin Hernández-Cruz ◽  
Alexis Paulina Jiménez-Uribe ◽  
Laura Gabriela Sánchez-Lozada ◽  
Omar Emiliano Aparicio-Trejo ◽  
...  

Mitochondrial transplantation (MT) is a new experimental approach that has demonstrated positive results reverting mitochondrial alterations in cardiac and kidney dysfunction mainly mediated by oxidative stress. On the other hand, cisplatin is an effective and widely used antineoplastic drug in treating several cancers; however, cisplatin has notorious side effects in different organs, such as the heart, kidneys, liver, and brain; the kidney being one of the most affected. The genitourinary system is the principal excretion pathway of cisplatin, since it is removed from the blood primarily by glomerular filtration and tubular secretion, and it may cause a sudden reduction in the renal function (acute kidney injury “AKI”), in part, by inducing mitochondrial dysfunction and the consequent oxidative stress in the tubular segment. In addition, AKI may associate with cardiac alterations, as occurs in acute cardiorenal syndrome. Due to the high prevalence of renal and cardiac side effects produced by cisplatin, here we discuss the possible use of MT as a novel therapy that could protect tissues by alleviating mitochondrial dysfunction and reducing reactive oxygen species (ROS) production.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2088
Author(s):  
Florian Hoppel ◽  
Luiz Felipe Garcia-Souza ◽  
Wilhelm Kantner-Rumplmair ◽  
Martin Burtscher ◽  
Erich Gnaiger ◽  
...  

Human blood cells may offer a minimally invasive strategy to study systemic alterations of mitochondrial function. Here we tested the reliability of a protocol designed to study mitochondrial respiratory control in human platelets (PLTs) in field studies, using high-resolution respirometry (HRR). Several factors may trigger PLT aggregation during the assay, altering the homogeneity of the cell suspension and distorting the number of cells added to the two chambers (A, B) of the Oroboros Oxygraph-2k (O2k). Thus, inter-chamber variability (∆ab) was calculated by normalizing oxygen consumption to chamber volume (JO2) or to a specific respiratory control state (flux control ratio, FCR) as a reliable parameter of experimental quality. The method’s reliability was tested by comparing the ∆ab of laboratory-performed experiments (LAB, N = 9) to those of an ultramarathon field study (three sampling time-points: before competition (PRE, N = 7), immediately after (POST, N = 10) and 24 h after competition (REC; N = 10)). Our results show that ∆ab JO2 changed PRE-POST, but also for LAB-POST and LAB-REC, while all ∆ab FCR remained unchanged. Thus, we conclude that our method is reliable for assessing PLT mitochondrial function in LAB and field studies and after systemic stress conditions.


Sign in / Sign up

Export Citation Format

Share Document