conformational preferences
Recently Published Documents


TOTAL DOCUMENTS

928
(FIVE YEARS 95)

H-INDEX

50
(FIVE YEARS 5)

2021 ◽  
Vol 22 (24) ◽  
pp. 13532
Author(s):  
Monika Kovačević ◽  
Mojca Čakić Semenčić ◽  
Kristina Radošević ◽  
Krešimir Molčanov ◽  
Sunčica Roca ◽  
...  

The concept of peptidomimetics is based on structural modifications of natural peptides that aim not only to mimic their 3D shape and biological function, but also to reduce their limitations. The peptidomimetic approach is used in medicinal chemistry to develop drug-like compounds that are more active and selective than natural peptides and have fewer side effects. One of the synthetic strategies for obtaining peptidomimetics involves mimicking peptide α-helices, β-sheets or turns. Turns are usually located on the protein surface where they interact with various receptors and are therefore involved in numerous biological events. Among the various synthetic tools for turn mimetic design reported so far, our group uses an approach based on the insertion of different ferrocene templates into the peptide backbone that both induce turn formation and reduce conformational flexibility. Here, we conjugated methyl 1′-aminoferrocene-carboxylate with homo- and heterochiral Pro-Ala dipeptides to investigate the turn formation potential and antiproliferative properties of the resulting peptidomimetics 2–5. Detailed spectroscopic (IR, NMR, CD), X-ray and DFT studies showed that the heterochiral conjugates 2 and 3 were more suitable for the formation of β-turns. Cell viability study, clonogenic assay and cell death analysis showed the highest biological potential of homochiral peptide 4.


2021 ◽  
Author(s):  
Alex van der Ham ◽  
Thomas Hansen ◽  
Hermen S. Overkleeft ◽  
Dmitri V. Filippov ◽  
Grégory F. Schneider ◽  
...  

The physico-chemical properties of chiral propeller-shaped PAHs (propellerenes) are strongly dependent on their conformational behavior. A sound, physical model to understand why propellerenes exhibit a conformation preference for either a C2 or D3 conformation that moves beyond a phenomenological explanation is needed. We have therefore performed a computational study to rationalize the conformational preference of propellerenes. Using an activation strain analysis approach, we find that the conformational preference of propellerenes is ultimately determined by the flexibility of the wings. When wings are relatively flexible, as is the case for ortho-substituted propellerenes, a favorable contraction of the radial bonds connecting the core and the propellerene wings is possible, and the more distorted C2 conformation will be preferred. The more rigid wings of benzenoid propellerenes, on the other hand, cannot deform sufficiently, and will therefore always adopt a D3 conformation. Our approach represents a unique method to pinpoint the conformational preferences of propellerenes, and, in principle, any sterically congested molecule.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikolas Friedrich ◽  
Emanuel Stiegeler ◽  
Matthias Glögl ◽  
Thomas Lemmin ◽  
Simon Hansen ◽  
...  

AbstractThe V3 loop of the HIV-1 envelope (Env) protein elicits a vigorous, but largely non-neutralizing antibody response directed to the V3-crown, whereas rare broadly neutralizing antibodies (bnAbs) target the V3-base. Challenging this view, we present V3-crown directed broadly neutralizing Designed Ankyrin Repeat Proteins (bnDs) matching the breadth of V3-base bnAbs. While most bnAbs target prefusion Env, V3-crown bnDs bind open Env conformations triggered by CD4 engagement. BnDs achieve breadth by focusing on highly conserved residues that are accessible in two distinct V3 conformations, one of which resembles CCR5-bound V3. We further show that these V3-crown conformations can, in principle, be attacked by antibodies. Supporting this conclusion, analysis of antibody binding activity in the Swiss 4.5 K HIV-1 cohort (n = 4,281) revealed a co-evolution of V3-crown reactivities and neutralization breadth. Our results indicate a role of V3-crown responses and its conformational preferences in bnAb development to be considered in preventive and therapeutic approaches.


Computation ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 121
Author(s):  
Liliana Mammino

Trimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and exhibit biological activities, often better than the corresponding activities of monomeric acylphloroglucinols. All the stable conformers of T-ACPLs contain seven intramolecular hydrogen bonds, which constitute the dominant stabilising factors. A total of 38 different T-ACPLs, including both naturally occurring and model molecules, have been calculated at the HF and DFT/B3LYP levels. The DFT/B3LYP calculations were carried out both without and with Grimme’s dispersion correction, to highlight the dispersion (and, therefore, also electron correlation) effects for these molecules. The roles of dispersion are evaluated considering the effects of Grimme’s correction on the estimation of the conformers’ energies, the description of the characteristics of the individual hydrogen bonds, the conformers’ geometries and other molecular properties. Overall, the results offer a comprehensive overview of the conformational preferences of T-ACPL molecules, their intramolecular hydrogen bond patterns, and the correlation effects on their properties.


2021 ◽  
Author(s):  
James A. Martin ◽  
Arthur G. Palmer

Ribonuclease HI (RNHI) non-specifically cleaves the RNA strand in RNA:DNA hybrid duplexes in a myriad of biological processes, including retroviral reverse transcription. Several RNHI homologs contain an extended domain, termed the handle region, that is critical to substrate binding. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have suggested a kinetic model in which the handle region can exist in open (substrate-binding competent) or closed (substrate-binding incompetent) states in homologs containing arginine or lysine at position 88 (using sequence numbering of E. coli RNHI), while the handle region populates a state intermediate between the open and closed conformers in homologs with as-paragine at residue 88 [Stafford, K. A., et al., PLoS Comput. Biol. 2013, 9, 1-10]. NMR parameters characterizing handle region dynamics are highly correlated with enzymatic activity for RNHI homologs with two-state (open/closed) handle regions [Martin, J. A., et al., Biochemistry 2020, 59, 3201-3205]. The work presented herein shows that homologs with one-state (intermediate) handle regions display distinct structural features compared with their two-state counterparts. Comparisons of RNHI homologs and site-directed mutants with arginine at position 88 support a kinetic model for handle region dynamics that includes 12 unique transitions between eight conformations. Overall, these findings present an example of the structure-function relationships of enzymes and spotlight the use of NMR spectroscopy and MD simulations in uncovering fine details of conformational preferences.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1505
Author(s):  
Zita Harmat ◽  
Dániel Dudola ◽  
Zoltán Gáspári

Ensemble-based structural modeling of flexible protein segments such as intrinsically disordered regions is a complex task often solved by selection of conformers from an initial pool based on their conformity to experimental data. However, the properties of the conformational pool are crucial, as the sampling of the conformational space should be sufficient and, in the optimal case, relatively uniform. In other words, the ideal sampling is both efficient and exhaustive. To achieve this, specialized tools are usually necessary, which might not be maintained in the long term, available on all platforms or flexible enough to be tweaked to individual needs. Here, we present an open-source and extendable pipeline to generate initial protein structure pools for use with selection-based tools to obtain ensemble models of flexible protein segments. Our method is implemented in Python and uses ChimeraX, Scwrl4, Gromacs and neighbor-dependent backbone distributions compiled and published previously by the Dunbrack lab. All these tools and data are publicly available and maintained. Our basic premise is that by using residue-specific, neighbor-dependent Ramachandran distributions, we can enhance the efficient exploration of the relevant region of the conformational space. We have also provided a straightforward way to bias the sampling towards specific conformations for selected residues by combining different conformational distributions. This allows the consideration of a priori known conformational preferences such as in the case of preformed structural elements. The open-source and modular nature of the pipeline allows easy adaptation for specific problems. We tested the pipeline on an intrinsically disordered segment of the protein Cd3ϵ and also a single-alpha helical (SAH) region by generating conformational pools and selecting ensembles matching experimental data using the CoNSEnsX+ server.


2021 ◽  
Vol 28 ◽  
Author(s):  
Robbie P. Joosten ◽  
Robert A. Nicholls ◽  
Jon Agirre

: Macromolecular restrained refinement is nowadays the most used method for improving the agreement between an atomic structural model and experimental data. Restraint dictionaries, a key tool behind the success of the method, allow fine-tuning geometric properties such as distances and angles between atoms beyond simplistic expectations. Dictionary generators can provide restraint target estimates derived from different sources, from fully theoretical to experimental and any combination in between. Carbohydrates are stereochemically complex biomolecules and, in their pyranose form, have clear conformational preferences. As such, they pose unique problems to dictionary generators and in the course of this study, require special attention from software developers. Functional differences between restraint generators will be discussed, as well as the process of achieving consistent results with different software designs. The study will conclude a set of practical considerations, as well as recommendations for the generation of new restraint dictionaries, using the improved software alternatives discussed.


2021 ◽  
Vol 118 (36) ◽  
pp. e2106195118
Author(s):  
Anna S. Kamenik ◽  
Isha Singh ◽  
Parnian Lak ◽  
Trent E. Balius ◽  
Klaus R. Liedl ◽  
...  

Protein flexibility remains a major challenge in library docking because of difficulties in sampling conformational ensembles with accurate probabilities. Here, we use the model cavity site of T4 lysozyme L99A to test flexible receptor docking with energy penalties from molecular dynamics (MD) simulations. Crystallography with larger and smaller ligands indicates that this cavity can adopt three major conformations: open, intermediate, and closed. Since smaller ligands typically bind better to the cavity site, we anticipate an energy penalty for the cavity opening. To estimate its magnitude, we calculate conformational preferences from MD simulations. We find that including a penalty term is essential for retrospective ligand enrichment; otherwise, high-energy states dominate the docking. We then prospectively docked a library of over 900,000 compounds for new molecules binding to each conformational state. Absent a penalty term, the open conformation dominated the docking results; inclusion of this term led to a balanced sampling of ligands against each state. High ranked molecules were experimentally tested by Tm upshift and X-ray crystallography. From 33 selected molecules, we identified 18 ligands and determined 13 crystal structures. Most interesting were those bound to the open cavity, where the buried site opens to bulk solvent. Here, highly unusual ligands for this cavity had been predicted, including large ligands with polar tails; these were confirmed both by binding and by crystallography. In docking, incorporating protein flexibility with thermodynamic weightings may thus access new ligand chemotypes. The MD approach to accessing and, crucially, weighting such alternative states may find general applicability.


Sign in / Sign up

Export Citation Format

Share Document