topology and shape optimization
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
John A Turner ◽  
James Belak ◽  
Nathan Barton ◽  
Matthew Bement ◽  
Neil Carlson ◽  
...  

Additive manufacturing (AM), or 3D printing, of metals is transforming the fabrication of components, in part by dramatically expanding the design space, allowing optimization of shape and topology. However, although the physical processes involved in AM are similar to those of welding, a field with decades of experimental, modeling, simulation, and characterization experience, qualification of AM parts remains a challenge. The availability of exascale computational systems, particularly when combined with data-driven approaches such as machine learning, enables topology and shape optimization as well as accelerated qualification by providing process-aware, locally accurate microstructure and mechanical property models. We describe the physics components comprising the Exascale Additive Manufacturing simulation environment and report progress using highly resolved melt pool simulations to inform part-scale finite element thermomechanics simulations, drive microstructure evolution, and determine constitutive mechanical property relationships based on those microstructures using polycrystal plasticity. We report on implementation of these components for exascale computing architectures, as well as the multi-stage simulation workflow that provides a unique high-fidelity model of process–structure–property relationships for AM parts. In addition, we discuss verification and validation through collaboration with efforts such as AM-Bench, a set of benchmark test problems under development by a team led by the National Institute of Standards and Technology.


2021 ◽  
Vol 64 (4) ◽  
pp. 2687-2707
Author(s):  
Gabriel Stankiewicz ◽  
Chaitanya Dev ◽  
Paul Steinmann

AbstractDensity-based topology optimization and node-based shape optimization are often used sequentially to generate production-ready designs. In this work, we address the challenge to couple density-based topology optimization and node-based shape optimization into a single optimization problem by using an embedding domain discretization technique. In our approach, a variable shape is explicitly represented by the boundary of an embedded body. Furthermore, the embedding domain in form of a structured mesh allows us to introduce a variable, pseudo-density field. In this way, we attempt to bring the advantages of both topology and shape optimization methods together and to provide an efficient way to design fine-tuned structures without predefined topological features.


2021 ◽  
Vol 47 ◽  
Author(s):  
Dmitrij Šešok ◽  
Paulius Ragauskas

In the paper the global optimization problem of truss systems is studied.  The genetic algorithms are employed for the optimization. As the objective function the structure mass is treated; the constraints include equilibrium, local stability and other requirements.  All the truss system characteristics needed for genetic algorithm are obtained via finite element solution. Topology optimization of truss system is performed using original modified genetic algorithm, while the shape optimization – using ordinary genetic algorithm. Numerical solutions are presented. The obtained solutions are compared with global extremes obtained using full search algorithm.  All the numerical examples are solved using original software.


2020 ◽  
Vol 62 (5) ◽  
pp. 454-464
Author(s):  
Gültekin Karadere ◽  
Yavuz Düzcan ◽  
Ali Rıza Yıldız

Abstract The population of the world is increasing day by day. Accordingly, the amount of production and consumption are increasing. Due to the continuous and rapid development of technology, the duration of the use of some products becomes shorter. That is why the more efficient use of limited resources is even more important. In the developing and growing automotive industry, companies are currently focusing on weight and cost reduction methods to compete. In this study, the optimum design has been achieved by using topology and shape optimization in the suspension cover used in suspension systems. As a result of the topology and shape optimization efforts, The mass of the optimum design achieved was reduced by 35.203 % according to the first design.


Sign in / Sign up

Export Citation Format

Share Document