melting pool
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 17)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 71 ◽  
pp. 178-186
Author(s):  
Teng Yang ◽  
Yuqi Jin ◽  
Brian Squires ◽  
Tae-Youl Choi ◽  
Narendra B. Dahotre ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5196
Author(s):  
Yuan Zhang ◽  
Yexin Jin ◽  
Yao Chen ◽  
Jianfeng Liu

Coaxial powder feeding technology in the field of metal additive manufacturing is booming. In this paper, a new laser cladding nozzle with powder feeding channels of inner and outer rings is designed. The nozzle works with a new kind of laser, which is a new heat source with an inner beam and outer beams. The water-cooling channels are simulated in Ansys Workbench. The simulation results present the temperature distribution of the working nozzle and the velocity of the cooling water. The thermal dilation of the nozzle in the working environment is also simulated. The results show that the loop water cooling channel could effectively reduce the high temperature of the nozzle down to about 200 °C. In addition, it could well restrain the thermal deformation of the nozzle lower to 0.35 mm. The equivalent stress of most parts is controlled under 360 MPa. Then, the powder flows of the inner and outer rings of the multiple powder feeding channels are simulated in Ansys Fluent. The convergence effect of the powder flow could be assumed and some significant parameters, such as the velocity, are acquired. The results present that these multiple powder feeding channels could realize the generation and removal of removable supports of workpieces with highly complex shapes and achieve a large processing range and good processing efficiency. The velocity of the powder flow at the outlet is elevated to about 5 mm/s. Then, the thermal cladding states under the new laser heat source of the powder are simulated in Workbench. The temperature of the melting process and the thermal deformation and the equivalent stress/strain of the additive parts are obtained in the emulation. The results emerge that the powder melting range and the ascending temperature of the melting pool are improved with this effect. The greatest temperature of the melting pool is about 2900 °C in the machining process, and the maximum thermal equivalent stress is 1.1407 × 1010 Pa.


2021 ◽  
Vol 10 (2) ◽  
pp. 219-232
Author(s):  
Martin Lerchen ◽  
Jakob Hornung ◽  
Yu Zou ◽  
Tino Hausotte

Abstract. Additive manufacturing technologies are further developing from prototype to serial production. This trend requires rising challenges to the process-accompanying quality assurance. Optical in situ quality control approaches show great potential to generate accurate measurement data, which are essential for feedback control. If a reliable referencing concept for the layer-by-layer measured data is guaranteed, contour information can be used during the manufacturing to correct occurring geometrical deviations. Within this scientific study, two methods of optical, referenced in situ control of lateral displacements of additive manufactured contours are presented. In the first approach the 2-D contour of the melting pool is analysed in relation to a position-stable reference system implemented in the powder bed. The second approach uses the translucent contour of deeper layers covered with powder as a reference. Within the image evaluation several pre-processing steps like calibration, undistortion, rectification, illumination correction and low-pass filtering are essential for reliable and correct geometric measurements. The following adapted contour detection and position determination of the referenced melting pool contours are based on an extended edge detection algorithm according to Canny (1986). With the evaluation of further manufacturing layers of already lowered powder bed levels, it is possible to specify the influence of powder application on geometrical displacements separately. This is done by a comparison of the position of the detected powder-covered melting pool contours with the previously applied melted region. Consequently a better understanding of lateral contour displacements within the additive manufacturing process is the goal, which is important for a process-accompanying correction of geometrical deviations.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4175
Author(s):  
Zhenqiang Lin ◽  
Yiwen Lai ◽  
Taotao Pan ◽  
Wang Zhang ◽  
Jun Zheng ◽  
...  

Selective laser melting (SLM) is a forming technology in the field of metal additive manufacturing. In order to improve the quality of formed parts, it is necessary to monitor the selective laser melting forming process. At present, most of the research on the monitoring of the selective laser melting forming process focuses on the monitoring of the melting pool, but the quality of forming parts cannot be controlled in real-time. As an indispensable link in the SLM forming process, the quality of powder spreading directly affects the quality of the formed parts. Therefore, this paper proposes a detection method for SLM powder spreading defects, mainly using industrial cameras to collect SLM powder spreading surfaces, designing corresponding image processing algorithms to extract three common powder spreading defects, and establishing appropriate classifiers to distinguish different types of powder spreading defects. It is determined that the multilayer perceptron (MLP) is the most accurate classifier. This detection method has high recognition rate and fast detection speed, which cannot only meet the SLM forming efficiency, but also improve the quality of the formed parts through feedback control.


2021 ◽  
Author(s):  
Pavel Rohan ◽  
Marie Kolaříková ◽  
Stanislav Krum ◽  
Zdeněk Hazdra ◽  
Josef Šepitka ◽  
...  

Abstract Pulsed plasma transferred arc surfacing is presently used in many industrial applications to make protective layers against corrosion, temperature exposition, and excessive wear. Increasing wear resistance is especially important in areas of industry where titanium alloys are used, such as aviation and cosmonautics, because the wear resistance of titanium alloys is often weak. One way to increase the wear resistance is to deposit or form a cermet with a titanium matrix (TMC) on the surface of the part. The present study deals with the fabrication and characterization of TMC based on B4C. TMC with B4C was formed by cofeeding Ti6Al4V and B4C powder into a melting pool. It has been found that the deposited, relatively thick layers have homogeneously dispersed B4C grains in the matrix. The deposits are metallurgically connected to the substrate - Ti6Al4V. The TMCs were investigated in terms of microstructure and chemical composition. Wear resistance was determined using the linear pin test.


2021 ◽  
Author(s):  
Liang-Yan Lee ◽  
Kai-Chieh Chang ◽  
Jun-Ren Zhao ◽  
Fei-Yi Hung

Abstract In this study, an Al-Mg-Sc-Zr alloy fabricated through selective laser melting (SLM) was subjected to a single-stage heat-treatment process and a two-stage heat-treatment process to determine the effect of heat treatment on the tensile properties and fatigue properties of the alloy at room temperature and high temperatures. The results indicated that heat treatment caused the precipitation of Al3(Sc, Zr), thus increasing the tensile strength. The dynamic strain aging of the SLM Al-Mg-Sc-Zr alloy disappeared as the tensile temperature increased. The alloy exhibited the highest tensile strength after it was subjected to the single-stage heat treatment at both room temperature and high temperatures owing to the precipitated phase distribution at the melting pool boundaries. However, fatigue resistance and high-temperature necking of the as-printed SLM Al-Mg-Sc-Zr alloy were problems that could not be resolved with the single-stage heat treatment. In the two-stage heat treatment, the precipitated phases exhibited a uniform distribution in the matrix, thereby reducing the high-temperature necking phenomenon. The two-stage heat treatment helped reduce the melting pool interface effect and strengthen the matrix, restricting the propagation of fatigue cracks and increasing the fatigue life of materials.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87
Author(s):  
Kai-Chieh Chang ◽  
Jun-Ren Zhao ◽  
Fei-Yi Hung

Al-Ni-Cu alloys are used in energy, automotive, and aerospace industries because of their excellent mechanical properties, corrosion resistance, and high-temperature stability. In this study, Al-Ni-Cu alloy powder was subjected to selective laser melting (SLM). The SLM Al-Ni-Cu alloy was manufactured using appropriate printing parameters, and its properties were investigated. The results revealed that the As-printed material exhibited a typical melting pool stack structure, with an ultimate tensile strength of 725 MPa but a high brittleness effect (low ductility). After traditional heat treatment, the melting pool structure did not completely disappear. The strengthening phase Al7Cu23Ni precipitated from the boundary of the melting pools; thus, the Al-Ni-Cu alloy maintained high strength (>500 MPa) and considerably increased ductility (>10%). The SLM Al-Ni-Cu alloy has considerable industrial application potential; therefore, increasing the heat treatment temperature or extending the heat treatment time in the future works can promote the decomposition of the melting pool boundary and solve the problem related to the aggregation behavior of the precipitation phase, thereby improving the fatigue life of the alloy.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 45
Author(s):  
Bo Wang ◽  
Xueyong Ding ◽  
Tianhua Ju ◽  
Xiaofei Zhang ◽  
Gongjin Cheng

A novel smelting reduction process called pre-reduction in rotary kiln and total oxygen melting pool is a promising route to reduce environmental pollution from the ironmaking industry. In this paper, the process parameters and appropriate efficiency of reduction in the pre-reduction process of the rotary kiln were investigated via the detection of the metallization rate, phase composition, and internal morphology of the product combining with the analysis of the off-gas. The results indicated that the parameters of reduction temperature, reduction holding time, and coal ratio have a remarkable influence on the metallization rate. The reduction temperature has the most significant effect, followed by the reduction time and the coal ratio. Furthermore, under the condition of reduction temperature 1000 °C, holding time 30 min, coal ratio = 1, a product with a metallization rate of more than 70% can be obtained, which meets the requirements of the rotary kiln process, and its CO2/CO value of the pre-reduction endpoint is appropriate. Continue to increase the temperature, holding time, and coal ratio can raise the metallization rate of the pellets, but only a little improvement and may cause reoxidation of the product.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1657
Author(s):  
Sangwoo Nam ◽  
In-Ho Jung ◽  
Young-Min Kim

This paper reports on the effect of a TiN spray coating on aluminum to improve laser welding issues such as cracking susceptibility and laser absorption. A self-restraint hot cracking test and bead on plate test were employed to compare the laser weldability between the base material and TiN-coated material. The welds with the TiN coating can be fully penetrated without cracks at lower power than the welds without the coating. TiN-incorporated metal matrix composites were formed on the top layer irradiated with the laser. The layer increases the laser absorption to transfer energy efficiently and strengthens it to withstand higher stresses and strains. In addition, the welding mechanism of this process is such that the ceramic coating layer blocks direct interaction between the laser and the metal melting pool, so that a keyhole is not formed, and welding is performed by heat conduction through the TiN ceramic medium.


Sign in / Sign up

Export Citation Format

Share Document