This article introduces a two-parameter flexible extension of the Burr-Hatke distribution using the inverse-power transformation. The failure rate of the new distribution can be an increasing shape, a decreasing shape, or an upside-down bathtub shape. Some of its mathematical properties are calculated. Ten estimation methods, including classical and Bayesian techniques, are discussed to estimate the model parameters. The Bayes estimators for the unknown parameters, based on the squared error, general entropy, and linear exponential loss functions, are provided. The ranking and behavior of these methods are assessed by simulation results with their partial and overall ranks. Finally, the flexibility of the proposed distribution is illustrated empirically using two real-life datasets. The analyzed data shows that the introduced distribution provides a superior fit than some important competing distributions such as the Weibull, Fréchet, gamma, exponential, inverse log-logistic, inverse weighted Lindley, inverse Pareto, inverse Nakagami-M, and Burr-Hatke distributions.