best choice problem
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 0)

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 158
Author(s):  
Alexander Gnedin ◽  
Zakaria Derbazi

We introduce a betting game where the gambler aims to guess the last success epoch in a series of inhomogeneous Bernoulli trials paced randomly in time. At a given stage, the gambler may bet on either the event that no further successes occur, or the event that exactly one success is yet to occur, or may choose any proper range of future times (a trap). When a trap is chosen, the gambler wins if the last success epoch is the only one that falls in the trap. The game is closely related to the sequential decision problem of maximising the probability of stopping on the last success. We use this connection to analyse the best-choice problem with random arrivals generated by a Pólya-Lundberg process.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1639
Author(s):  
Marek Skarupski

The classical secretary problem models a situation in which the decision maker can select or reject in the sequential observation objects numbered by the relative ranks. In theoretical studies, it is known that the strategy is to reject the first 37% of objects and select the next relative best one. However, an empirical result for the problem is that people do not apply the optimal rule. In this article, we propose modeling doubts of decision maker by considering a modification of the secretary problem. We assume that the decision maker can not observe the relative ranks in a proper way. We calculate the optimal strategy in such a problem and the value of the problem. In special cases, we also combine this problem with the no-information best choice problem and a no-information second-best choice problem.


2020 ◽  
Vol 92 (3) ◽  
pp. 435-460
Author(s):  
Lazar Obradović

2017 ◽  
Vol 54 (2) ◽  
pp. 343-362
Author(s):  
Fabricio Siqueira Benevides ◽  
Małgorzata Sulkowska

AbstractThe vertices of thekth power of a directed path withnvertices are exposed one by one to a selector in some random order. At any time the selector can see the graph induced by the vertices that have already appeared. The selector's aim is to choose online the maximal vertex (i.e. the vertex with no outgoing edges). We give upper and lower bounds for the asymptotic behaviour ofpn,kn1/(k+1), wherepn,kis the probability of success under the optimal algorithm. In order to derive the upper bound, we consider a model in which the selector obtains some extra information about the edges that have already appeared. We give the exact asymptotics of the probability of success under the optimal algorithm in this case. In order to derive the lower bound, we analyse a site percolation process on a sequence of thekth powers of a directed path withnvertices.


2016 ◽  
Vol 48 (3) ◽  
pp. 726-743 ◽  
Author(s):  
Mitsushi Tamaki

Abstract The best-choice problem and the duration problem, known as versions of the secretary problem, are concerned with choosing an object from those that appear sequentially. Let (B,p) denote the best-choice problem and (D,p) the duration problem when the total number N of objects is a bounded random variable with prior p=(p1, p2,...,pn) for a known upper bound n. Gnedin (2005) discovered the correspondence relation between these two quite different optimal stopping problems. That is, for any given prior p, there exists another prior q such that (D,p) is equivalent to (B,q). In this paper, motivated by his discovery, we attempt to find the alternate correspondence {p(m),m≥0}, i.e. an infinite sequence of priors such that (D,p(m-1)) is equivalent to (B,p(m)) for all m≥1, starting with p(0)=(0,...,0,1). To be more precise, the duration problem is distinguished into (D1,p) or (D2,p), referred to as model 1 or model 2, depending on whether the planning horizon is N or n. The aforementioned problem is model 1. For model 2 as well, we can find the similar alternate correspondence {p[m],m≥ 0}. We treat both the no-information model and the full-information model and examine the limiting behaviors of their optimal rules and optimal values related to the alternate correspondences as n→∞. A generalization of the no-information model is given. It is worth mentioning that the alternate correspondences for model 1 and model 2 are respectively related to the urn sampling models without replacement and with replacement.


2015 ◽  
Vol 52 (4) ◽  
pp. 926-940 ◽  
Author(s):  
Mitsushi Tamaki

As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.


2015 ◽  
Vol 52 (04) ◽  
pp. 926-940 ◽  
Author(s):  
Mitsushi Tamaki

As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.


Optimization ◽  
2015 ◽  
Vol 65 (4) ◽  
pp. 765-778 ◽  
Author(s):  
Michael Bendersky ◽  
Israel David

Sign in / Sign up

Export Citation Format

Share Document