fault location
Recently Published Documents


TOTAL DOCUMENTS

3588
(FIVE YEARS 1027)

H-INDEX

65
(FIVE YEARS 9)

Author(s):  
A. Saber ◽  
H.H. Zeineldin ◽  
Tarek H.M. EL-Fouly ◽  
Ahmed Al-Durra

Author(s):  
Moneer Nabwani ◽  
Michael Suleymanov ◽  
Yosef Pinhasi ◽  
Asher Yahalom

A new method for short circuit fault location is proposed based on instantaneous signal measurement and its derivatives, and is based on the retardation phenomena. The difference between the times in which a signal is registered in two detectors is used to locate the fault. Although a description of faults in terms of a lumped circuit is useful for elucidating the methods for detecting the fault. This description will not suffice to describe the fault signal propagation hence a distributed models is needed which is given in terms of the telegraph equations. Those equations are used to derive a transmission line transfer function, and an exact analytical description of the short circuit signal propagating in the transmission line is obtained. The analytical solution was verified both by numerical simulations and experimentally.


Author(s):  
Xinglong Wang ◽  
Jinde Zheng ◽  
Jun Zhang

Abstract The level selection of frequency band division structure relies on previous information in most gram approaches that capture the optimal demodulation frequency band (ODFB). When an improper level is specified in these approaches, the fault characteristic information contained in the produced ODFB may be insufficient. This research proposes a unique approach termed median line-gram (MELgram) to tackle the level selection problem. To divide the frequency domain signal into a series of demodulation frequency bands, a spectrum median line segmentation model based on Akima interpolation is first created. The level and boundary of the segmentation model can be adaptively identified by this means. Second, the acquired frequency bands are quantized using the negative entropy index, and the ODFB is defined as the frequency band with the largest value. Third, the envelope spectrum is used to determine the ODFB characteristic frequency to pinpoint the bearing fault location. Finally, both simulation and experimental signal analysis are used to demonstrate the efficiency of the suggested method. Furthermore, the suggested method extracts more defect feature information from the ODFB than existing methods.


Author(s):  
Jing An ◽  
Peng An

The traditional intelligent identification method requires a complex feature extraction process and much diagnosis experience, considering the characteristics of one dimension of bearing vibration signals, a new method of intelligent fault diagnosis based on 1-dimensional convolutional neural network is presented. This method automatically extracts features from frequency domain signals and avoids artificial feature selection and feature extraction. The proposed method is validated on bearing benchmark datasets, these datasets are collected in different fault location, different health conditions and different operating conditions. The result shows that the proposed method can not only adaptively obtain representative fault features from the datasets, but also achieve higher diagnosis accuracy than the existing methods.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 458
Author(s):  
Zakaria El Mrabet ◽  
Niroop Sugunaraj ◽  
Prakash Ranganathan ◽  
Shrirang Abhyankar

Power system failures or outages due to short-circuits or “faults” can result in long service interruptions leading to significant socio-economic consequences. It is critical for electrical utilities to quickly ascertain fault characteristics, including location, type, and duration, to reduce the service time of an outage. Existing fault detection mechanisms (relays and digital fault recorders) are slow to communicate the fault characteristics upstream to the substations and control centers for action to be taken quickly. Fortunately, due to availability of high-resolution phasor measurement units (PMUs), more event-driven solutions can be captured in real time. In this paper, we propose a data-driven approach for determining fault characteristics using samples of fault trajectories. A random forest regressor (RFR)-based model is used to detect real-time fault location and its duration simultaneously. This model is based on combining multiple uncorrelated trees with state-of-the-art boosting and aggregating techniques in order to obtain robust generalizations and greater accuracy without overfitting or underfitting. Four cases were studied to evaluate the performance of RFR: 1. Detecting fault location (case 1), 2. Predicting fault duration (case 2), 3. Handling missing data (case 3), and 4. Identifying fault location and length in a real-time streaming environment (case 4). A comparative analysis was conducted between the RFR algorithm and state-of-the-art models, including deep neural network, Hoeffding tree, neural network, support vector machine, decision tree, naive Bayesian, and K-nearest neighborhood. Experiments revealed that RFR consistently outperformed the other models in detection accuracy, prediction error, and processing time.


Sign in / Sign up

Export Citation Format

Share Document