pseudoholomorphic curves
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Benjamin Filippenko ◽  
Katrin Wehrheim

AbstractWe give a detailed proof of the homological Arnold conjecture for nondegenerate periodic Hamiltonians on general closed symplectic manifolds M via a direct Piunikhin–Salamon–Schwarz morphism. Our constructions are based on a coherent polyfold description for moduli spaces of pseudoholomorphic curves in a family of symplectic manifolds degenerating from $${{\mathbb {C}}{\mathbb {P}}}^1\times M$$ C P 1 × M to $${{\mathbb {C}}}^+ \times M$$ C + × M and $${{\mathbb {C}}}^-\times M$$ C - × M , as developed by Fish–Hofer–Wysocki–Zehnder as part of the Symplectic Field Theory package. To make the paper self-contained we include all polyfold assumptions, describe the coherent perturbation iteration in detail, and prove an abstract regularization theorem for moduli spaces with evaluation maps relative to a countable collection of submanifolds. The 2011 sketch of this proof was joint work with Peter Albers, Joel Fish.


Author(s):  
Tobias Diez ◽  
Gerd Rudolph

AbstractLocal normal form theorems for smooth equivariant maps between infinite-dimensional manifolds are established. These normal form results are new even in finite dimensions. The proof is inspired by the Lyapunov–Schmidt reduction for dynamical systems and by the Kuranishi method for moduli spaces. It uses a slice theorem for Fréchet manifolds as the main technical tool. As a consequence, the abstract moduli space obtained by factorizing a level set of the equivariant map with respect to the group action carries the structure of a Kuranishi space, i.e., such moduli spaces are locally modeled on the quotient by a compact group of the zero set of a smooth map. The general results are applied to the moduli space of anti-self-dual instantons, the Seiberg–Witten moduli space and the moduli space of pseudoholomorphic curves.


2021 ◽  
pp. 1-43
Author(s):  
JOEL W. FISH ◽  
HELMUT H. W. HOFER

Abstract We use feral pseudoholomorphic curves and adiabatic degeneration to prove an extended version of the so-called ‘almost existence result’ for regular compact Hamiltonian energy surfaces. That is, that for a variety of symplectic manifolds equipped with a Hamiltonian, almost every (non-empty) compact energy level has a periodic orbit.


Astérisque ◽  
2020 ◽  
Vol 415 ◽  
pp. 87-112
Author(s):  
Joel FISH ◽  
Helmut HOFER

Sign in / Sign up

Export Citation Format

Share Document