flame acceleration
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 67)

H-INDEX

31
(FIVE YEARS 3)

Hydrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 28-42
Author(s):  
Hyung-Seok Kang ◽  
Jongtae Kim ◽  
Seong-Wan Hong

We performed a hydrogen combustion analysis in the Advanced Power Reactor 1400 MWe (APR1400) containment during a severe accident initiated by a small break loss of coolant accident (SBLOCA) which occurred at a lower part of the cold leg using a multi-dimensional hydrogen analysis system (MHAS) to confirm the integrity of the APR1400 containment. The MHAS was developed by combining MAAP, GASFLOW, and COM3D to simulate hydrogen release, distribution and combustion in the containment of a nuclear power plant during the severe accidents in the containment of a nuclear power reactor. The calculated peak pressure due to the flame acceleration by the COM3D, using the GASFLOW results as an initial condition of the hydrogen distribution, was approximately 555 kPa, which is lower than the fracture pressure 1223 kPa of the APR1400 containment. To induce a higher peak pressure resulted from a strong flame acceleration in the containment, we intentionally assumed several things in developing an accident scenario of the SBLOCA. Therefore, we may judge that the integrity of the APR1400 containment can be maintained even though the hydrogen combustion occurs during the severe accident initiated by the SBLOCA.


2022 ◽  
Vol 34 (1) ◽  
pp. 013604
Author(s):  
Serdar Bilgili ◽  
Vitaly Bychkov ◽  
V'yacheslav Akkerman

2021 ◽  
Vol 13 (22) ◽  
pp. 12537
Author(s):  
Chi Wing To ◽  
Wan Ki Chow ◽  
Fang Ming Cheng

Clean fuel is advocated to be used for sustainability. The number of liquefied petroleum gas (LPG) and hydrogen vehicles is increasing globally. Explosion hazard is a threat. On the other hand, the use of hydrogen is under consideration in Hong Kong. Explosion hazards of these clean fuel (LPG and hydrogen) vehicles were studied and are compared in this paper. The computational fluid dynamics (CFD) software Flame Acceleration Simulator (FLACS) was used. A car garage with a rolling shutter as its entrance was selected for study. Dispersion of LPG from the leakage source with ignition at a higher position was studied. The same garage was used with a typical hydrogen vehicle leaking 3.4 pounds (1.5 kg) of hydrogen in 100 s, the mass flow rate being equal to 0.015 kgs−1. The hydrogen vehicle used in the simulation has two hydrogen tanks with a combined capacity of 5 kg. The entire tank would be completely vented out in about 333 s. Two scenarios of CFD simulation were carried out. In the first scenario, the rolling shutter was completely closed and the leaked LPG or hydrogen was ignited at 300 s after leakage. The second scenario was conducted with a gap height of 0.3 m under the rolling shutter. Predicted results of explosion pressure and temperature show that appropriate active fire engineering systems are required when servicing these clean fuel vehicles in garages. An appropriate vent in an enclosed space such as the garage is important in reducing explosion hazards.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6233
Author(s):  
Alexey Kiverin ◽  
Ivan Yakovenko

Combustible aqueous foams and foamed emulsions represent prospective energy carriers. This paper is devoted to the overview of model assumptions required for numerical simulations of combustion and detonation processes in aqueous foams. The basic mathematical model is proposed and used for the analysis of the combustion development in the wet aqueous foam containing bubbles filled with reactive gas. The numerical results agree with the recent experimental data on combustion and detonation in aqueous foams containing premixed hydrogen–oxygen. The obtained results allowed for distinguishing the mechanisms of flame acceleration, transition to detonation, detonation propagation, and decay.


2021 ◽  
Vol 12 (3) ◽  
pp. 118
Author(s):  
Yahao Shen ◽  
Tao Zheng ◽  
Hong Lv ◽  
Wei Zhou ◽  
Cunman Zhang

It is significant to assess the hydrogen safety of fuel cell vehicles (FCVs) in parking garages with a rapidly increased number of FCVs. In the present work, a Flame Acceleration Simulator (FLACS), a computational fluid dynamics (CFD) module using finite element calculation, was utilized to predict the dispersion process of flammable hydrogen clouds, which was performed by hydrogen leakage from a fuel cell vehicle in an outdoor parking garage. The effect of leakage diameter (2 mm, 3 mm, and 4 mm) and parking configurations (vertical and parallel parking) on the formation of flammable clouds with a range of 4–75% by volume was considered. The emission was assumed to be directed downwards from a Thermally Activated Pressure Relief Device (TPRD) of a 70 MPa storage tank. The results show that the 0.7 m parking space stipulated by the current regulations is less than the safety space of fuel cell vehicles. Compared with a vertical parking configuration, it is safer to park FCVs in parallel. It was also shown that release through a large TPRD orifice should be avoided, as the proportion of the larger hydrogen concentration in the whole flammable domain is prone to more accidental severe consequences, such as overpressure.


Sign in / Sign up

Export Citation Format

Share Document