trpm2 channels
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 19)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Robert M. Dietz ◽  
James E. Orfila ◽  
Nicholas Chalmers ◽  
Crystal Minjarez ◽  
Jose Vigil ◽  
...  

Hippocampal cell death and cognitive dysfunction are common following global cerebral ischemia across all ages, including children. Most research has focused on preventing neuronal death. Restoration of neuronal function after cell death is an alternative approach (neurorestoration). We previously identified transient receptor potential M2 (TRPM2) ion channels as a potential target for acute neuroprotection and delayed neurorestoration in an adult CA/CPR mouse model. Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) in juvenile (p20-25) mice was used to investigate the role of ion TRPM2 channels in neuroprotection and ischemia-induced synaptic dysfunction in the developing brain. Our novel TRPM2 inhibitor, tatM2NX, did not confer protection against CA1 pyramidal cell death but attenuated synaptic plasticity (long-term plasticity (LTP)) deficits in both sexes. Further, in vivo administration of tatM2NX two weeks after CA/CPR reduced LTP impairments and restored memory function. These data provide evidence that pharmacological synaptic restoration of the surviving hippocampal network can occur independent of neuroprotection via inhibition of TRPM2 channels, providing a novel strategy to improve cognitive recovery in children following cerebral ischemia. Importantly, these data underscore the importance of age-appropriate models in disease research.


2021 ◽  
Author(s):  
Bhupesh Vaidya ◽  
Harpinder Kaur ◽  
Pavan Thapak ◽  
Shyam Sunder Sharma ◽  
Jitendra N Singh

Abstract Transient receptor potential melastatin-2 (TRPM2) channels are cation channels activated by oxidative stress and adenosine di-phosphate ribose (ADPR). Role of TRPM2 channels has been postulated in several neurological disorders, but, it has not been explored in animal models of Parkinson’s disease (PD). Thus, the role of TRPM2 and its associated poly (ADP-ribose) polymerase (PARP) signalling pathways were investigated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model using TRPM2 inhibitor, 2-aminoethyl diphenyl borinate (2-APB) and PARP inhibitor, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34). PD was induced by using a bilateral intranigral administration of MPTP in Sprague-Dawley rats, and different parameters were evaluated. An increase in the oxidative stress was observed, leading to the locomotor and cognitive deficits in the PD rats. PD rats also showed an increased TRPM2 expression in striatum and mid brain accompanied by reduced expression of tyrosine-hydroxylase (TH) in comparison to sham animals. Intraperitoneal administration of 2-aminoethyl diphenyl borinate (2-APB) and N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34) led to an improvement in the locomotor and cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and an increase in TH levels in striatum and mid brain. In addition, these pharmacological interventions also led to a decrease in the expression of TRPM2 in PD in striatum and mid brain. Our results provide a rationale for the development of potent pharmacological agents targeting TRPM2-PARP pathway to provide therapeutic benefits for the treatment of neurological disease like PD.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1243
Author(s):  
Eunus S. Ali ◽  
Grigori Y. Rychkov ◽  
Greg J. Barritt

TRPM2 channels admit Ca2+ and Na+ across the plasma membrane and release Ca2+ and Zn2+ from lysosomes. Channel activation is initiated by reactive oxygen species (ROS), leading to a subsequent increase in ADP-ribose and the binding of ADP-ribose to an allosteric site in the cytosolic NUDT9 homology domain. In many animal cell types, Ca2+ entry via TRPM2 channels mediates ROS-initiated cell injury and death. The aim of this review is to summarise the current knowledge of the roles of TRPM2 and Ca2+ in the initiation and progression of chronic liver diseases and acute liver injury. Studies to date provide evidence that TRPM2-mediated Ca2+ entry contributes to drug-induced liver toxicity, ischemia–reperfusion injury, and the progression of non-alcoholic fatty liver disease to cirrhosis, fibrosis, and hepatocellular carcinoma. Of particular current interest are the steps involved in the activation of TRPM2 in hepatocytes following an increase in ROS, the downstream pathways activated by the resultant increase in intracellular Ca2+, and the chronology of these events. An apparent contradiction exists between these roles of TRPM2 and the role identified for ROS-activated TRPM2 in heart muscle and in some other cell types in promoting Ca2+-activated mitochondrial ATP synthesis and cell survival. Inhibition of TRPM2 by curcumin and other “natural” compounds offers an attractive strategy for inhibiting ROS-induced liver cell injury. In conclusion, while it has been established that ROS-initiated activation of TRPM2 contributes to both acute and chronic liver injury, considerable further research is needed to elucidate the mechanisms involved, and the conditions under which pharmacological inhibition of TRPM2 can be an effective clinical strategy to reduce ROS-initiated liver injury.


2021 ◽  
Author(s):  
Ryusuke Nishio ◽  
Hiroki Morioka ◽  
Azusa Takeuchi ◽  
Nana Saeki ◽  
Ryo Furuhata ◽  
...  

Abstract To elucidate the mechanism of 6-hydroxydopamine (6-OHDA)-induced Zn2+ toxicity, which is involved in neurodegeneration in the substantia nigra pars compacta (SNpc) of rats, we postulated that intracellular hydrogen peroxide (H2O2) produced by 6-OHDA is a trigger for intracellular Zn2+ dysregulation in the SNpc. Intracellular H2O2 level in the SNpc elevated by 6-OHDA was completely inhibited by co-injection of GBR 13069 dihydrochloride (GBR), a dopamine reuptake inhibitor, suggesting that 6-OHDA taken up through dopamine transporters produces H2O2 in the intercellular compartment of dopaminergic neurons. When the SNpc was perfused with H2O2, H2O2 accumulated glutamate in the extracellular compartment and the accumulation was inhibited in the presence of N-(p-amylcinnamoyl)anthranilic acid (ACA), a blocker of the transient receptor potential melastatin 2 (TRPM2) channels. In addition to 6-OHDA, H2O2 also induced intracellular Zn2+ dysregulation via AMPA receptor activation followed by nigral dopaminergic degeneration. Furthermore, 6-OHDA-induced nigral dopaminergic degeneration was completely inhibited by co-injection of HYDROP, an intracellular H2O2 scavenger or GBR into the SNpc. The present study indicates that H2O2 is produced by 6-OHDA taken up through dopamine transporters in the SNpc, is retrogradely transported to presynaptic glutamatergic terminals, activates TRPM2 channels, accumulates glutamate in the extracellular compartment, and induces intracellular Zn2+ dysregulation via AMPA receptor activation, resulting in nigral dopaminergic degeneration. It is likely that intracellular H2O2, but not extracellular H2O2, is a key trigger for nigral dopaminergic degeneration via intracellular Zn2+ dysregulation.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Jacob M Basak ◽  
James E Orfila ◽  
Robert Dietz ◽  
Amelia Burch ◽  
Andra Dingman ◽  
...  

Introduction: Cognitive impairments and memory loss are common after stroke, with an emerging awareness of a high risk of conversion to post-stroke dementia. It is increasingly clear that in addition to neuronal injury following cerebral ischemia, impaired functional networks contribute to long-term functional deficits. Synaptic plasticity (LTP) is the leading cellular model of learning and memory. Thus, we utilize electrophysiological recordings of hippocampal LTP as an indicator of network health following ischemia in combination with neurobehavioral assessments of memory function. Hypothesis: Focal ischemic stroke increases soluble amyloid beta (Aβ) in the hippocampus, causing impaired plasticity and memory function. Methods: Extracellular field recordings of CA1 neurons were performed in acute hippocampal slices prepared 30 days after recovery from transient MCAO (45 min) in adult (6-8 week) mice. A behavioral fear conditioning paradigm (CFC) was used to evaluate memory. ELISA assay was used to quantify soluble Aβ42 from the hippocampus. Slices were treated with Aβ42 oligomers with and without our newly developed peptide inhibitor of TRPM2, termed tatM2NX. Results: Recordings from brain slices 30 days after MCAO showed near complete loss of LTP; 161±9%, n=6 in sham compared to 115±4%, n=7 30 days after MCAO in the hippocampus. MCAO decreased freezing behavior, indicating lack of memory (65±7% in sham mice (n=6) and 37±7% in MCAO mice, n=7). We observed a 48% increase in Aβ42 in the hippocampus 30 days after MCAo. We observed that addition of Aβ42 oligomers (500 nM) impaired LTP. This impaired LTP was prevented with co-application of the TRPM2 channel inhibitor tatM2NX. Consistent with a role of TRPM2 channels in post-stroke cognitive impairment, MCAO mice treated with tatM2NX (20 mg/kg iv injection 24 hr before testing) on day 29 post MCA demonstrated increasing freezing to 72±5% (n=9). Conclusion: Our data implicates increased levels of soluble Aβ42 in the hippocampus following stroke, resulting in activation of TRPM2 channels and impaired synaptic plasticity. Therefore, reducing soluble Aβ42 and/or inhibition of TRPM2 channels at chronic time points following ischemia may represent a novel strategy to improve functional recovery following stroke.


2020 ◽  
Vol 17 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Pavan Thapak ◽  
Mahendra Bishnoi ◽  
Shyam S. Sharma

Background: Diabetes is a chronic metabolic disorder affecting the central nervous system. A growing body of evidence has depicted that high glucose level leads to the activation of the transient receptor potential melastatin 2 (TRPM2) channels. However, there are no studies targeting TRPM2 channels in diabetes-induced cognitive decline using a pharmacological approach. Objective: The present study intended to investigate the effects of 2-aminoethoxydiphenyl borate (2-APB), a TRPM2 inhibitor, in diabetes-induced cognitive impairment. Methods: Streptozotocin (STZ, 50 mg/kg, i.p.) was used to induce diabetes in rats. Animals were randomly divided into the treatment group, model group and age-matched control and pre se group. 2-APB treatment was given for three weeks to the animals. After 10 days of behavioural treatment, parameters were performed. Animals were sacrificed at 10th week of diabetic induction and the hippocampus and cortex were isolated. After that, protein and mRNA expression study was performed in the hippocampus. Acetylcholinesterase (AchE) activity was done in the cortex. Results: : Our study showed the 10th week diabetic animals developed cognitive impairment, which was evident from the behavioural parameters. Diabetic animals depicted an increase in the TRPM2 mRNA and protein expression in the hippocampus as well as increased AchE activity in the cortex. However, memory associated proteins were down-regulated, namely Ca2+/calmodulin-dependent protein kinase II (CaMKII-Thr286), glycogen synthase kinase 3 beta (GSK-3β-Ser9), cAMP response element-binding protein (CREB-Ser133), and postsynaptic density protein 95 (PSD-95). Gene expression of parvalbumin, calsequestrin and brain-derived neurotrophic factor (BDNF) were down-regulated while mRNA level of calcineurin A/ protein phosphatase 3 catalytic subunit alpha (PPP3CA) was upregulated in the hippocampus of diabetic animals. A three-week treatment with 2-APB significantly ameliorated the alteration in behavioural cognitive parameters in diabetic rats. Moreover, 2-APB also down-regulated the expression of TRPM2 mRNA and protein in the hippocampus as well as AchE activity in the cortex of diabetic animals as compared to diabetic animals. Moreover, the 2-APB treatment also upregulated the CaMKII (Thr-286), GSK-3β (Ser9), CREB (Ser133), and PSD-95 expression and mRNA levels of parvalbumin, calsequestrin, and BDNF while mRNA level of calcineurin A was down-regulated in the hippocampus of diabetic animals. Conclusion: : This study confirms the ameliorative effect of TRPM2 channel inhibitor in the diabetes- induced cognitive deficits. Inhibition of TRPM2 channels reduced the calcium associated downstream signaling and showed a neuroprotective effect of TRPM2 channels in diabetesinduced cognitive impairment.


2020 ◽  
Vol 882 ◽  
pp. 173163
Author(s):  
Ramazan Bal ◽  
Gurkan Ozturk ◽  
Ebru Onalan Etem ◽  
Ersen Eraslan ◽  
Seda Ozaydin

Sign in / Sign up

Export Citation Format

Share Document