The cholecystokinin-2 receptor (CCK2R) is an attractive target in nuclear medicine due to its overexpression by different tumors. Several radiolabeled peptidic ligands targeting the CCK2R have been investigated in the past; however, their low stability against proteases can limit their uptake in tumors and metastases. Substitution of single or multiple amide bonds with metabolically stable 1,4-disubstituted 1,2,3-triazoles as amide bond bioisosteres proved a promising strategy for improving the tumor-targeting properties of a truncated analog of minigastrin. In this study, we applied the previously studied structural modifications to improve the pharmacokinetic and pharmacodynamic properties of PP-F11N, a minigastrin analog currently in clinical trials. Novel minigastrins (NMGs) as analogs of PP-F11N with one or two amide bonds substituted by 1,2,3-triazoles were synthesized, radiolabeled with 177Lu3+, and subjected to full evaluation in vitro (cell internalization, receptor affinity, stability in blood plasma) and in vivo (stability, biodistribution, SPECT/CT imaging). NMGs with triazoles inserted between the amino acids DGlu10-Ala11 and/or Tyr12-Gly13 showed a significantly increased cellular uptake and affinity toward the CCK2R in vitro. Resistance against the metabolic degradation of the NMGs was comparable to those of the clinical candidate PP-F11N. Imaging by SPECT/CT and biodistribution studies demonstrated a higher uptake in CCK2R-positive tumors but also in the CCK2R-positive stomach. The peptidomimetic compounds showed a slow tumor washout and high tumor-to-kidney ratios. The structural modifications led to the identification of analogs with promising properties for progression to clinical applications in the diagnosis and therapy of CCK2R-positive neoplasms.