combined structure
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 53)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
O. L. TIUTKIN ◽  
D. O. BANNIKOV ◽  
V. А. MIROSHNYK ◽  
I. V. HELETIUK

Purpose. The development of construction of underground excavations of the Dnipro Metro requires analysis and scientific substantiation of design solutions based on technologies that are new for Ukraine. The aim of the scientific article is to analyze the combined design of the shaft of the Dnipro Metro by the finite element method with determination of force factors in the linings of the pile system and shotcrete system with further substantiation based on the results of design solutions to the real situation of Dnipro Metro construction. Methodology. Two finite element models were constructed for the analysis of the shaft № 1 of the Dnipro Metro by the finite element method. They reflect the combined design of the shaft, which consists of two parts. The finite-element model of the pile system, which reflects the shell of bored piles, supported by a cap beam and ring beams, is analyzed separately. The model for the shotcrete system, which is used for the second part of the shaft, which lies in a solid rock mass, is separately modeled and analyzed. Finite-element models of both systems are assigned real deformation and geometric parameters, as well as the load, which became the key to adequate calculations by the finite element method. Findings. During the numerical analysis of the combined structure of the shaft № 1 of Dnipro Metro, the force factors (normal forces and bending moments) for the pile system and the shotcrete system were determined. These results became the basis for the reinforcement of both systems. Originality. A numerical analysis of the shaft structure was performed, which provided a complete picture of the force factors that allow predicting the appearance of normal forces and bending moments in similar engineering and geological conditions. Practical value. The results of the analysis of the combined design of the shaft of the Dnipro Metro by the finite element method allowed to scientifically substantiate the design solutions and ensure high performance of both shaft systems № 1.


Georesursy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 107-115
Author(s):  
Svetlana Punanova

Studies have been carried out to assess the qualitative features of fluids, aimed at identifying the regularities in the differentiation of the properties of naphthides during the formation of hydrocarbon deposits outside anticlinal structures. Due to the exhaustion of hydrocarbon reserves associated with anticlinal traps, the main attention is paid to the composition of fluids confined specifically to non-anticlinal structures – to traps of a combined structure. Physicochemical properties, trace element (TE) composition, phase states of naphthides in deposits affected by hypergenetic or catagenetic processes have been analyzed using specific examples; in regions with a possible additional inflow of hydrocarbons (Romashkino group of fields in the Republic of Tatarstan); in the crystalline basement of sedimentary basins. The results of the analysis make it possible to predict the characteristic features of fluids in traps of various types at certain levels of the processes of oil formation, secondary transformation and destruction of accumulations, mainly due to the tectonic regime of the sedimentary basin. With prolonged lateral migration, at great depths with good isolation from surface weathering agents, light oils, depleted in TE, more often of nickel specialization, are found in lithologically and stratigraphically screened traps, and gas condensate accumulations are possible. At shallow depths with poor regional or local seals, heavy, highly viscous hypergene-transformed oils, natural bitumens with high concentrations of industrially significant metals V, Ni, Co, Mo Cd, U were found in traps of pinch-out zones and various types of trap screening. tectonically-screened traps) with a multiphase filling of traps and, at the same time, the influence and inflow of deep ones, i.e. more catagenically transformed fluids, it is possible to detect light oils of the nickel type or gas condensates enriched with elements of “magmatic emanations” – As, Hg, Al, B, rare earth elements. Oils filling combined traps in the crystalline basement within platform oil and gas basins, as a rule, do not differ in their compositional peculiarities in comparison with oils in overlying or adjacent parts of the sedimentary section.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Saiwei Cheng ◽  
Xiaojie Li ◽  
Yang Wang ◽  
Yuxin Wang ◽  
Honghao Yan

In recent years, with the improvement of environmental protection requirements year by year and the continuous expansion of explosive working scale, higher standards have been put forward for explosive working. It is hoped that the sphere of influence of the explosion can be limited to a minimal range. The explosion vessel is driven by such demand. As the explosion vessel’s key component, studying the blast-resistant door in depth is of great significance. This paper introduces a new elliptical blast-resistant door with the combined structure (EBD), mainly welded with an elliptical panel, arc support plate, and triangle support plate. The finite element program AUTODYN was used to calculate the explosion load, and LS-DYNA was used to calculate the blast-resistant door’s dynamic response. The calculation results show that the newly proposed EBD’s blast-resistance capacity is better than that of the traditional structure. To further study the factors that affect the dynamic response of the EBD, a parametric study was carried out on the EBD, mainly analyzing the influence of the vacuum degree in the explosion vessel, the number of explosives, and the diameter ratio of the EBD. The parametric calculation results show that reducing the vacuum degree in the explosion vessel and the number of explosives during explosion working can improve the blast-resistance capacity of the EBD. Based on the analysis of the dynamic response of four kinds of EBD with different diameter ratios under 0.2 atm explosion load, the optimal diameter ratio of the EBD is given.


Author(s):  
Zhonghua He ◽  
Hong Liang ◽  
Zhaohui Yang

Abstract Hydrologic drought, considered as a typical natural phenomenon in the background of global climate changes, is the continuation and development of meteorological and agricultural droughts, and is the ultimate and most thoroughly drought. The research area controlled by the 55 hydrological sections in South China is selected in this paper, and the intensity and frequency of hydrologic droughts are analyzed by the Standardized Runoff Index (SRI), and the driven mechanism of watershed lithologies to hydrologic droughts is discussed. The results show that (i) the hydrological drought of Karst drainage basins is shown the gradual aggravation from the west to east parts in South China, with the significant north–south stripe distributions at the SRI_3 and SRI_6; (ii) the occurring probability of hydrological droughts is the Limestone-type Karst Basin (II and III, 0.17) < Dolomite-type Karst Basin (I and IV, 0.22) < Non-Karst Basin (V, 0.25) in terms of combination types of basin lithologies, and (iii) the Karst Basin (I and III, 0.18) < Semi-Karst Basin (II and IV, 0.2) < Non-Karst Basin (V, 0.25) in terms of basin lithologies. Therefore, this proves that the most water-stored spaces are found in Karst Basins under the differential dissolution or erosion effects of soluble water, followed by in the Semi-Karst Basin, the least water-stored spaces in the Non-Karst Basin.


Author(s):  
S.A. Punanova ◽  
A.V. Samoilova

The possibilities of predicting the phase state of hydrocarbon deposits by geochemical methods are considered. The article briefly describes the well-known gas-geochemical and petrochemical forecasting methods, and also proposes to use trace element indicators of fluids for these purposes. Based on the study of the distribution of the trace element composition of oils and condensates in Western Siberia, Turkmenistan, the Caspian Sea region, New Zealand and some other regions, the trace element geochemical indicators of naphthides are recommended for diagnostics of oil and gas condensate systems. The fact of the presence of trace elements in the light fractions of hydrocarbon fluids and the revealed genetic differences between oils and condensates make it possible to use trace element characterization of fluids for practical problems of oil and gas prospecting geology. Since by now hydrocarbon production reserves in anticlinal structures is nearing exhaustion, considerable attention is paid to complex combined traps confined to greater depths and severe thermobaric conditions.


Author(s):  
Jason Miller ◽  
Scott Sheffield ◽  
Wendelin Werner

AbstractWe study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble $$\hbox {CLE}_{\kappa '}$$ CLE κ ′ for $$\kappa '$$ κ ′ in (4, 8) that is drawn on an independent $$\gamma $$ γ -LQG surface for $$\gamma ^2=16/\kappa '$$ γ 2 = 16 / κ ′ . The results are similar in flavor to the ones from our companion paper dealing with $$\hbox {CLE}_{\kappa }$$ CLE κ for $$\kappa $$ κ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the $$\hbox {CLE}_{\kappa '}$$ CLE κ ′ in terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “CLE Percolations” described the law of interfaces obtained when coloring the loops of a $$\hbox {CLE}_{\kappa '}$$ CLE κ ′ independently into two colors with respective probabilities p and $$1-p$$ 1 - p . This description was complete up to one missing parameter $$\rho $$ ρ . The results of the present paper about CLE on LQG allow us to determine its value in terms of p and $$\kappa '$$ κ ′ . It shows in particular that $$\hbox {CLE}_{\kappa '}$$ CLE κ ′ and $$\hbox {CLE}_{16/\kappa '}$$ CLE 16 / κ ′ are related via a continuum analog of the Edwards-Sokal coupling between $$\hbox {FK}_q$$ FK q percolation and the q-state Potts model (which makes sense even for non-integer q between 1 and 4) if and only if $$q=4\cos ^2(4\pi / \kappa ')$$ q = 4 cos 2 ( 4 π / κ ′ ) . This provides further evidence for the long-standing belief that $$\hbox {CLE}_{\kappa '}$$ CLE κ ′ and $$\hbox {CLE}_{16/\kappa '}$$ CLE 16 / κ ′ represent the scaling limits of $$\hbox {FK}_q$$ FK q percolation and the q-Potts model when q and $$\kappa '$$ κ ′ are related in this way. Another consequence of the formula for $$\rho (p,\kappa ')$$ ρ ( p , κ ′ ) is the value of half-plane arm exponents for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for two-dimensional models.


Author(s):  
Tieneng Guo ◽  
Lingjun Meng ◽  
Jinxuan Cao ◽  
Chunsheng Bai

Investigating weak parts of the structure is one of the most important issues for improving the stiffness of the machine tool. However, studies show that overcoming the static deformation is a challenging problem in practical structures. In the present study, the dynamic hammer testing approach is applied to analyze the cantilever structure of the machine tool with elastic support. Accordingly, a new weakness index (WI) is proposed to identify weak parts of the cantilever structure with an elastic support. Then the cantilever beam with the elastic support is numerically simulated and weak parts are modeled as stiffness reduction. In this regard, finite element (FE) simulations are carried out to evaluate the effectiveness of the WI method in several scenarios with single and multiple weaknesses, including the noise case. In the combined structure of the tailstock and the bed of the machine tool, sensors are utilized to collect vibration data. Furthermore, the dynamic characteristics are calculated through the modal state-space method to obtain the stiffness data at zero-frequency. Then, weak parts of the structural stiffness are identified based on the weakness index. It is found that the FE simulations are in an excellent agreement with the experiment. Therefore, it is proved that the WI can accurately identify the weak parts of the machine tool cantilever structure.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199652
Author(s):  
Tieneng Guo ◽  
Lingjun Meng ◽  
Jinxuan Cao ◽  
Chunsheng Bai ◽  
Xu Hua ◽  
...  

The weak part of the stiffness of machine tool combined structure is the key to improve the stiffness of machine tool. To overcome the static deformation with difficulty acquisition, the paper chooses machine tool combined structure which can be equivalent to one-dimensional bar structure, and a weakness index (WI) is proposed to identify the weak part of the stiffness by means of the dynamic hammer test method. Based on the bar structure as a numerical example, the weak parts are modeled as EA reduction in stiffness while the mass is maintained at a constant value. Thorough finite element (FE) method simulations are performed to assess the robustness and limitations of the method in several scenarios with single and multiple weakness. On the crossbeam of gantry type machine tool, the sensors are used to collect vibration data, the structural modal parameters are obtained by singular value decomposition (SVD) technique, and the dynamic characteristics are systematically reconstructed by using modal state space method to obtain stiffness data at zero-frequency. Then, the weak part of the structural stiffness is identified by the weakness index. Finally, the comparison of FE simulations and experiment results are provided to illustrate the working of the method.


Sign in / Sign up

Export Citation Format

Share Document