turning motion
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 31)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 1451
Author(s):  
Kunyu Han ◽  
Xide Cheng ◽  
Zuyuan Liu ◽  
Chenran Huang ◽  
Haichao Chang ◽  
...  

Maneuverability, which is closely related to operational performance and safety, is one of the important hydrodynamic properties of an underwater vehicle (UV), and its accurate prediction is essential for preliminary design. The purpose of this study is to analyze the turning ability of a UV while rising or submerging; the computational fluid dynamics (CFD) method was used to numerically predict the six-DOF self-propelled maneuvers of submarine model BB2, including steady turning maneuvers and space spiral maneuvers. In this study, the overset mesh method was used to deal with multi-body motion, the body force method was used to describe the thrust distribution of the propeller at the model scale, and the numerical prediction also included the dynamic deflection of the control planes, where the command was issued by the autopilot. Then, this study used the published model test results of the tank to verify the effectiveness of the CFD prediction of steady turning maneuvers, and the prediction of space spiral maneuvers was carried out on this basis. The numerical results show that the turning motion has a great influence on the depth and pitch attitude of the submarine, and a “stern heavier” phenomenon occurs to a submarine after steering. The underwater turning of a submarine can not only reduce the speed to brake but also limit the dangerous depth. The conclusion is of certain reference significance for submarine emergency maneuvers.


Author(s):  
Santanu Mitra ◽  
Vaibhav Sehgal ◽  
Shubham Rathore ◽  
Raghav Puri ◽  
Shivani Chouhan ◽  
...  

Biomimetics aims to take inspiration from nature and develop new models and efficient systems for a sustainable future. Bioinspired underwater robotics help develop future submarines that will navigate through the water using flexible propulsor. This research has focused on the Manta Ray species as batoid has a unique advantage over other species. This study also aims to improve AUV (Autonomous Underwater Vehicle) efficiency through biomimetic design, the purpose of which is to observe and study the marine environment, be it for sea exploration or navigation. The design and prototyping process of bioinspired AUVs have been mentioned in this study, along with testing a propulsive mechanism for efficient swimming and turning capabilities. The Robot was designed taking structural considerations from the actual Manta-Ray locomotion and body design. The propulsion mechanism and control circuit were then implemented on the developed systems. The prototype of the Manta Ray was able to generate a realistic swimming pattern and was tested in an acrylic tank. The experimental results obtained in the tank basin are very close to the results we observe in the real-world scenario in terms of the vehicle's forward and turning motion.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258909
Author(s):  
Yasir Mehmood ◽  
Jawad Aslam ◽  
Nasim Ullah ◽  
Ahmed A. Alsheikhy ◽  
Emad Ud Din ◽  
...  

Skid-steered vehicles (SSV) are gaining huge importance in the market due to their applications like construction, agricultural work, material handling etc. The accuracy of performing such tasks require a robust control algorithm. The design of such controller is very challenging task due to external disturbances caused by wheel-ground interaction and aerodynamic effects. This paper proposes robust fractional and integral order fuzzy sliding mode controllers (FSMC, FFSMC) for a skid-steered vehicles with varying coefficient of friction and a displaced center of gravity (CG). FFSMC controller reduces the outcome of forces generated as a result of ground tire interaction during skidding and friction variations. The proposed controllers are implemented for a four-wheel SSV under high-speed turning motion. A simulation environment is constructed by implementing the SSV dynamics with wheel-road model and the performance of the proposed algorithms is tested. The simulation test is conducted for a Pioneer-3AT (P-3AT) robot SSV vehicle with displaced CG and variable coefficient of tires friction. Simulation results demonstrate the efficiency of the proposed FFSMC algorithm in term of reduced state errors and minimum chattering. The proposed controller compensates the effect of different responses of the wheels generated as a result of variable CG. The chattering phenomenon generated by conventional SMCs is also minimized by fuzzy tuning approach.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 118
Author(s):  
Manivannan Sivaperuman Kalairaj ◽  
Catherine Jiayi Cai ◽  
Pavitra S ◽  
Hongliang Ren

Nowadays, origami folding in combination with actuation mechanisms can offer deployable structure design, yield compliance, and have several properties of soft material. An easy complex folding pattern can yield an array of functionalities in actuated hinges or active spring elements. This paper presents various cylinder origami robot designs that can be untethered magnetically actuated. The different designs are analyzed and compared to achieve the following three types of motion: Peristaltic, rolling, and turning in different environments, namely, board, sandpaper, and sand. The proposed origami robot is able translate 53 mm in peristaltic motion within 20 s and is able to roll one complete cycle in 1 s and can turn ≈ 180∘ in 1.5 s. The robot also demonstrated a peristaltic locomotion at a speed of ≈2.5 mm s−1, ≈1.9 mm s−1, and ≈1.3 mm s−1 in board, sandpaper, and sand respectively; rolling motion at a speed of 1 cycle s−1, ≈0.66 cycles s−1, and ≈0.33 cycles s−1 in board, sandpaper, and sand respectively; and turning motion of ≈180∘, ≈83∘, and ≈58∘ in board, sandpaper, and sand respectively. The evaluation of the robotic motion and actuation is discussed in detail in this paper.


2021 ◽  
Vol 71 (5) ◽  
pp. 709-717
Author(s):  
Venkata Shashank Shankar Rayaprolu ◽  
R Vijayakumar

Autonomous underwater gliders (AUG) are a class of underwater vehicles that move using a buoyancy engine and forces from wings. Gliders execute turning motion with the help of a rudder or an internal roll control mechanism and the trajectory of the turn is a spiral. This paper analyses the sensitivity of the characteristics of spiral manoeuvre on the hydrodynamic coefficients of the glider. Based on the dynamics model of a gliding fish whose turn is enabled by a rudder, the effect of hydrodynamic coefficients of the hull and the rudder on the spiral motion are quantified. Local sensitivity analysis is undertaken using the indirect method. The order of importance of hydrodynamic coefficients is evaluated. It is observed that the spiral path parameters are most sensitive to the side force created by the rudder and the effect of the drag coefficient is predominant to that of the lift coefficients. This study will aid in quantifying the effect of change of geometry on the manoeuvrability of AUGs.


2021 ◽  
Author(s):  
Hironao Yamada ◽  
Takahiro Ikeda ◽  
Satoshi Ueki ◽  
Katsutoshi Ootsubo
Keyword(s):  

2021 ◽  
Author(s):  
Saika Iwamatsu ◽  
Yasunori Nihei ◽  
Kazuhiro Iijima ◽  
Tomoki Ikoma ◽  
Tomoki Komori

Abstract In this study, a series of dedicated water tank tests were conducted in wind and waves to investigate the stability performance and turning motion of Floating Offshore Wind Turbine (FOWT) equipped with two vertical axis wind turbines (VAWT). The FOWT targeted in this study is called Multi-connection VAWT, which is a new type of FOWT moored by Single-Point-Mooring (SPM) system. We designed and manufactured two types of semi-submersible floating bodies. One is a type in which VAWTs are mounted in two places of a right-angled isosceles triangle (Type-A) on a single floater, and the other is two independent units equipped with VAWTs on two separate floaters centered on a moored body. This is a type in which two semi-submersible floating bodies are lined up in a straight line (Type-B). The experimental conditions were determined by scaling down to 1/100 using Froude’s scaling law based on a wind thrust load of 320 kN (rated wind speed of 12 m/s) assuming an actual machine. In the free yawing test in waves, Type-A turned downwards, while Type-B was barely affected by the waves. Furthermore, in the free yawing test in wind, both Type-A and Type-B turned leeward and stabilized at a final point where the wind load was balanced.


2021 ◽  
Author(s):  
Bin Ye ◽  
Jiawei Yu ◽  
Liwei Liu ◽  
Qing Wang ◽  
Zhiguo Zhang

Abstract Numerically simulating a ship with six-degrees-of-freedom response motions of an unsteady maneuver in a wave environment is very important in seakeeping characteristics of ship design. This paper presents the simulation studies of the turning motion in regular waves of the ONRT model. Numerical simulations were performed using viscous CFD code HUST-Ship to solve the RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations and dynamic overset grids designed for ship hydrodynamics. RANS equations are solved by the finite difference method (FDM) and PISO arithmetic. The level-set method is used to simulate the free surface flow. Before the turning circle simulation, a V&V study is conducted for the total towed resistance. The real propeller was replaced by a description body force method in the process of turning motion. The constant rate of the revolution was applied throughout the simulation. The rotation of the propeller corresponds to the self-propulsion point of the model speed. The control of rudders was controlled by the following autopilot. The maximum rudder rate was assigned to 35.0 [deg/s]. The ship was released when a wave crest is passing the midship. The study focused on the parameters of the trajectories for turning circle, roll, pitch, velocity, etc, it is helpful to judge the influence of the wave on the turning motion. The simulation results match well with test data from IIHR.


Sign in / Sign up

Export Citation Format

Share Document