guanidinium group
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Isao Fujii

Nafamostat dimesylate {systematic name: [amino({6-[(4-{[amino(iminiumyl)methyl]amino}phenyl)carbonyloxy]naphthalen-2-yl})methylidene]azanium bis(methanesulfonate)}, C19H19N5O22 +·2CH3O3S−, is a broad-spectrum serine protease inhibitor and has been applied clinically as an anticoagulant agent during hemodialysis and for treatment of severe acute pancreatitis (SAP). Since nafamostat contains flexible moieties, it is necessary to determine the conformation to understand the structure–activity relationships. The divalent cation has a screw-like motif. The guanidinium group is approximately perpendicular to the naphthyl ring system, subtending a dihedral angle of 84.30 (14)°. In the crystal, the nafamostat molecules form columnar structures surrounded by a hydrophilic region.


2021 ◽  
Author(s):  
Matteo Paloni ◽  
Giovanni Bussi ◽  
Alessandro Barducci

AbstractBiomolecular condensates assembled through liquid-liquid phase separation (LLPS) of proteins and RNAs are currently recognized to play an important role in cellular organization. Their assembly depends on the formation of a network of transient, multivalent interactions between flexible scaffold biomolecules. Understanding how protein and RNA sequences determine these interactions and ultimately regulate the phase separation is an open key challenge. Recent in vitro studies have revealed that arginine and lysine residues, which are enriched in most cellular condensates, have markedly distinct propensities to drive the LLPS of protein/RNA mixtures. Here, we employ explicit-solvent atomistic Molecular Dynamics (MD) simulations to shed light on the microscopic origin of this difference by investigating mixtures of polyU oligonucleotides with either polyR/polyK peptides. In agreement with experiments, our simulations indicate that arginine has a higher affinity for polyU than lysine both in highly diluted conditions and in concentrated solutions with a biomolecular density comparable to cellular condensate. The analysis of intermolecular contacts suggests that this differential behavior is due to the propensity of arginine side chains to simultaneously form a higher number of specific interactions with oligonucleotides, including hydrogen bonds and stacking interactions. Our results provide a molecular description of how the multivalency of the guanidinium group enables the coordination of multiple RNA groups by a single arginine residue, thus ultimately stabilizing protein/RNA condensates.


2021 ◽  
Vol 22 (3) ◽  
pp. 1335
Author(s):  
Kristen Scopino ◽  
Carol Dalgarno ◽  
Clara Nachmanoff ◽  
Daniel Krizanc ◽  
Kelly M. Thayer ◽  
...  

The ribosome CAR interaction surface is hypothesized to provide a layer of translation regulation through hydrogen-bonding to the +1 mRNA codon that is next to enter the ribosome A site during translocation. The CAR surface consists of three residues, 16S/18S rRNA C1054, A1196 (E. coli 16S numbering), and R146 of yeast ribosomal protein Rps3. R146 can be methylated by the Sfm1 methyltransferase which is downregulated in stressed cells. Through molecular dynamics analysis, we show here that methylation of R146 compromises the integrity of CAR by reducing the cation-pi stacking of the R146 guanidinium group with A1196, leading to reduced CAR hydrogen-bonding with the +1 codon. We propose that ribosomes assembled under stressed conditions have unmethylated R146, resulting in elevated CAR/+1 codon interactions, which tunes translation levels in response to the altered cellular context.


2020 ◽  
Author(s):  
Kristen Scopino ◽  
Carol Dalgarno ◽  
Clara Nachmanoff ◽  
Daniel Krizanc ◽  
Kelly M. Thayer ◽  
...  

AbstractThe ribosome CAR interaction surface is hypothesized to provide a layer of translation regulation through hydrogen-bonding to the +1 mRNA codon that is next to enter the ribosome A site during translocation. The CAR surface consists of three residues, 16S/18S rRNA C1054, A1196 (E. coli 16S numbering), and R146 of yeast ribosomal protein Rps3. R146 can be methylated by the Sfm1 methyltransferase which is downregulated in stressed cells. Through molecular dynamics analysis, we show here that methylation of R146 compromises the integrity of CAR by reducing the pi stacking of the R146 guanidinium group with A1196, leading to reduced CAR hydrogen-bonding with the +1 codon. We propose that ribosomes assembled under stressed conditions have unmethylated R146, resulting in elevated CAR/+1 codon interactions, which tunes translation levels in response to the altered cellular context.


2020 ◽  
Author(s):  
Nathalie Ollivier ◽  
Vangelis Agouridas ◽  
Benoît Snella ◽  
Rémi Desmet ◽  
Hervé Drobecq ◽  
...  

Hydrazone and oxime peptide ligations are catalyzed by arginine. The catalysis is assisted intramolecularly by the side-chain guanidinium group. Hydrazone ligation in the presence of arginine proceeds efficiently in phosphate buffer at neutral pH but is particularly powerful in bicarbonate/CO<sub>2</sub> buffer. In addition to acting as a catalyst, arginine prevents the aggregation of proteins during ligation. With its dual properties as nucleophilic catalyst and protein aggregation inhibitor, arginine hydrochloride is a useful addition to the hydrazone/oxime ligation toolbox.<br>


2020 ◽  
Author(s):  
Nathalie Ollivier ◽  
Vangelis Agouridas ◽  
Benoît Snella ◽  
Rémi Desmet ◽  
Hervé Drobecq ◽  
...  

Hydrazone and oxime peptide ligations are catalyzed by arginine. The catalysis is assisted intramolecularly by the side-chain guanidinium group. Hydrazone ligation in the presence of arginine proceeds efficiently in phosphate buffer at neutral pH but is particularly powerful in bicarbonate/CO<sub>2</sub> buffer. In addition to acting as a catalyst, arginine prevents the aggregation of proteins during ligation. With its dual properties as nucleophilic catalyst and protein aggregation inhibitor, arginine hydrochloride is a useful addition to the hydrazone/oxime ligation toolbox.<br>


2020 ◽  
Author(s):  
Nathalie Ollivier ◽  
Vangelis Agouridas ◽  
Benoît Snella ◽  
Rémi Desmet ◽  
Hervé Drobecq ◽  
...  

Hydrazone and oxime peptide ligations are catalyzed by arginine. The catalysis is assisted intramolecularly by the side-chain guanidinium group. Hydrazone ligation in the presence of arginine proceeds efficiently in phosphate buffer at neutral pH but is particularly powerful in bicarbonate/CO<sub>2</sub> buffer. In addition to acting as a catalyst, arginine prevents the aggregation of proteins during ligation. With its dual properties as nucleophilic catalyst and protein aggregation inhibitor, arginine hydrochloride is a useful addition to the hydrazone/oxime ligation toolbox.<br>


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 849 ◽  
Author(s):  
Kristen Scopino ◽  
Elliot Williams ◽  
Abdelrahman Elsayed ◽  
William A. Barr ◽  
Daniel Krizanc ◽  
...  

A longstanding challenge is to understand how ribosomes parse mRNA open reading frames (ORFs). Significantly, GCN codons are over-represented in the initial codons of ORFs of prokaryote and eukaryote mRNAs. We describe a ribosome rRNA-protein surface that interacts with an mRNA GCN codon when next in line for the ribosome A-site. The interaction surface is comprised of the edges of two stacked rRNA bases: the Watson–Crick edge of 16S/18S rRNA C1054 and the adjacent Hoogsteen edge of A1196 (Escherichia coli 16S rRNA numbering). Also part of the interaction surface, the planar guanidinium group of a conserved Arginine (R146 of yeast ribosomal protein Rps3) is stacked adjacent to A1196. On its other side, the interaction surface is anchored to the ribosome A-site through base stacking of C1054 with the wobble anticodon base of the A-site tRNA. Using molecular dynamics simulations of a 495-residue subsystem of translocating ribosomes, we observed base pairing of C1054 to nucleotide G at position 1 of the next-in-line codon, consistent with previous cryo-EM observations, and hydrogen bonding of A1196 and R146 to C at position 2. Hydrogen bonding to both of these codon positions is significantly weakened when C at position 2 is changed to G, A or U. These sequence-sensitive mRNA-ribosome interactions at the C1054-A1196-R146 (CAR) surface potentially contribute to the GCN-mediated regulation of protein translation.


2020 ◽  
Author(s):  
Kristen Scopino ◽  
Elliot Williams ◽  
Abdelrahman Elsayed ◽  
William A. Barr ◽  
Daniel Krizanc ◽  
...  

ABSTRACTGCN codons are over-represented in initial codons of ORFs of prokaryote and eukaryote mRNAs. We describe a ribosome rRNA-protein surface that interacts with an mRNA GCN codon when next-in-line for the ribosome A site. The interaction surface is comprised of the edges of two stacked rRNA bases: the Watson-Crick edge of 16S/18S rRNA C1054 and adjacent Hoogsteen edge of A1196 (Escherichia coli 16S rRNA numbering). Also part of the interaction surface, the planar guanidinium group of a conserved Arginine (R146 of yeast ribosomal protein Rps3) is stacked adjacent to A1196. On its other side, the interaction surface is anchored to the ribosome A site through base stacking of C1054 with the wobble anticodon base of the A-site tRNA. Using Molecular Dynamics simulations of a 495-residue subsystem of translocating ribosomes, we observe base pairing of C1054 to nucleotide G at position 1 of the next-in-line codon, consistent with previous cryo-EM observations, and hydrogen bonding of A1196 and R146 to C at position 2. Hydrogen bonding to both of these codon positions is significantly weakened when C at position 2 is changed to G, A or U. These sequence-sensitive mRNA-ribosome interactions at the C1054-A1196-R146 (CAR) surface potentially contribute to GCN-mediated regulation of protein translation.


Sign in / Sign up

Export Citation Format

Share Document