feedback neural network
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 550
Author(s):  
Wasiq Ali ◽  
Wasim Ullah Khan ◽  
Muhammad Asif Zahoor Raja ◽  
Yigang He ◽  
Yaan Li

In this study, an intelligent computing paradigm built on a nonlinear autoregressive exogenous (NARX) feedback neural network model with the strength of deep learning is presented for accurate state estimation of an underwater passive target. In underwater scenarios, real-time motion parameters of passive objects are usually extracted with nonlinear filtering techniques. In filtering algorithms, nonlinear passive measurements are associated with linear kinetics of the target, governing by state space methodology. To improve tracking accuracy, effective feature estimation and minimizing position error of dynamic passive objects, the strength of NARX based supervised learning is exploited. Dynamic artificial neural networks, which contain tapped delay lines, are suitable for predicting the future state of the underwater passive object. Neural networks-based intelligence computing is effectively applied for estimating the real-time actual state of a passive moving object, which follows a semi-curved path. Performance analysis of NARX based neural networks is evaluated for six different scenarios of standard deviation of white Gaussian measurement noise by following bearings only tracking phenomena. Root mean square error between estimated and real position of the passive target in rectangular coordinates is computed for evaluating the worth of the proposed NARX feedback neural network scheme. The Monte Carlo simulations are conducted and the results certify the capability of the intelligence computing over conventional nonlinear filtering algorithms such as spherical radial cubature Kalman filter and unscented Kalman filter for given state estimation model.


Author(s):  
Tangbin Xia ◽  
Yimin Jiang ◽  
Pengcheng Zhuo ◽  
Lifeng Xi ◽  
Dong Wang

2020 ◽  
Vol 19 ◽  

The evolution of artificial intelligence has led to the developments of various smart applications such as the pattern recognition models. Pattern recognition techniques has as widely applied in many real life applications such character recognition, speech recognition, and bio-metric authentication as well person identification. In this paper, we report on the detailed design of pattern recognition system using Hopfield Feedback Neural Network (HFNN) with the least possible recognition error. As a case study, we have applied the proposed HFNN model to recognize the decimal digits 0 - 9 where each image digit comprises a 12x10 pixels. The developed HFNN model has been efficiently used in recognizing the patterns with 20% random bit noise at maximum recognition accuracy. However, to assure the the least possible recognition error, we have trained our HFNN through the digit patterns’ perdition phase of 0% noisy patterns and the system was able to correctly predict all the patterns without any bit error. Finally, we have plotted all output patterns including the desired patterns, the training patterns, the 20% noisy patterns and recognized patterns, for comparison purposes and to gain more insights about the accuracy achieved by applying the proposed HFNN.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1756
Author(s):  
Dae-Hyun Jung ◽  
Hak-Jin Kim ◽  
Joon Yong Kim ◽  
Taek Sung Lee ◽  
Soo Hyun Park

Maintaining environmental conditions for proper plant growth in greenhouses requires managing a variety of factors; ventilation is particularly important because inside temperatures can rise rapidly in warm climates. The structure of the window installed in a greenhouse is very diverse, and it is difficult to identify the characteristics that affect the temperature inside the greenhouse when multiple windows are driven, respectively. In this study, a new ventilation control logic using an output feedback neural-network (OFNN) prediction and optimization method was developed, and this approach was tested in multi-window greenhouses used for strawberry production. The developed prediction model used 15 inputs and achieved a highly accurate performance (R2 of 0.94). In addition, the method using an algorithm based on an OFNN was proposed for optimizing considered six window-opening behavior. Three case studies confirmed the optimization performance of OFNN in the nonlinear model and verified the performance through simulations. Finally, a control system based on this logic was used in a field experiment for six days by comparing two greenhouses driven by conventional control logic and the developed control logic; a comparison of the results showed RMSEs of 3.01 °C and 2.45 °C, respectively. It confirmed the improved control performance in comparison to a conventional ventilation control system.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Guofa Sun ◽  
Yaming Xu

This work investigates a finite-time observer problem for a class of uncertain switched nonlinear systems in strict-feedback form, preceded by unknown hysteresis. By using a finite-time performance function, a finite-time switched state observer (FTSO) is derived using radial basis function neural networks (RBFNNs) to estimate the unmeasured states. An adaptive feedback neural network tracking control is derived based on the backstepping technique, which guarantees that all the signals of the closed-loop system are bounded, the output tracking error converges to zero, and the observer error converges to a prescribed arbitrarily small region within a finite-time interval. In addition, two simulation studies and an experiment test are provided to verify the feasibility and effectiveness of the theoretical finding in this study.


Sign in / Sign up

Export Citation Format

Share Document