jeffrey nanofluid
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 59)

H-INDEX

19
(FIVE YEARS 7)

Author(s):  
Muhammad Rooman ◽  
Muhammad Asif Jan ◽  
Zahir Shah ◽  
Wejdan Deebani ◽  
Meshal Shutaywi

Purpose: The goal of this study is to investigate the entropy optimization of Jeffrey nanofluid flow with the homogeneous and heterogeneous reaction by stretching the rotating disk. The impact of Hall current is also being considered. The process of heat transmission is carried out. For heat transfer coefficient, temperature, concentration, velocity, Bejan number, and entropy generation rate and relevant equations are computed. The implications of various characteristics are investigated. The effect of emerging parameters of nanofluid flow is discussed and represented by a graph. To reduce partial differential equations into ordinary differential equations by using effective similarity transformation. The achieved non-linear system is resolved by the Homotopy analysis technique (HAM) to found the convergent solution of the designated flow problem. The impact of various pertinent parameters, i.e thermal radiations parameter, Brinkman number, Reynolds number, magnetic parameter, Hall Effects parameter, Jeffrey nanofluid parameters are discussed and presented by the graph. Engineering quantities such as Nusselt number and skin friction are also taken into account.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Faisal Shahzad ◽  
Dumitru Baleanu ◽  
Wasim Jamshed ◽  
Kottakkaran Sooppy Nisar ◽  
Mohamed R. Eid ◽  
...  

AbstractSurvey of literature unveils that nanofluids are more efficient for heat transport in comparison to the traditional fluids. However, the enlightenment of developed techniques for the augmentation of heat transport in nanomaterials has considerable gaps and, consequently, an extensive investigation for aforementioned models is vital. The ongoing investigation aims to study the 2-D, incompressible Jeffrey nanofluid heat transference flow due to a stretchable surface. Furthermore, the effect of dispersion of graphene nanoparticles in base liquid ethylene glycol (EG) on the performance of flow and heat transport using the Tawari-Das model in the existence of Ohmic heating (electroconductive heating) and viscous heat dissipation is contemplated. The boundary-layer PDEs are reconstituted as ODEs employing appropriate similarity transformation. Keller-Box Method (KBM) is utilized to determine the numerical findings of the problem. Graphene conducts heat greater in rate than all of the other materials and it is a good conductor of electrical energy. Graphene/EG nanofluid is employed to look out the parametric aspects of heat transport flow, drag coefficient, and heat transference rate phenomena with the aid of graphs and tables. The numerical outcomes indicate that concentration and magnetic field abate the shear stresses for the nanofluid. An increase of Graphene nanoparticle volume fraction parameter can boost the heat transport rate. The effect of Prandtl Number is to slow down the rate of heat transport as well as decelerate the temperature. Additionally, the rate of heat transportation augments on a surface under Deborah's number. Results indicate that the temperature of the graphene-EG nanofluid is greater than the convectional fluid hence graphene-EG nanofluid gets more important in the cooling process, biosensors and drug delivery than conventional fluids.


Author(s):  
D.O. Soumya ◽  
B.J. Gireesha ◽  
P. Venkatesh ◽  
Abdulmohsen Alsaiari

The present consideration explores the thermal energy and mass transfer process in conducting Jeffrey nanofluid flows through a microchannel. The slip boundary conditions, Brownian motion and temperature-dependent thermal conductivity were considered. The dimensionless governing models have been solved to the best possible investigative solutions using the Runge-Kutta-Fehlberg 4 −5th order numerical procedure. The impact of physical parameters on the momentum, energy, concentration, irreversibility and irreversibility ratio was revealed graphically in detail. It is concluded that the resultant momentum profile is augmented with the relaxation and retardation times parameter all over the flow region. The temperature-dependent thermal conductivity contributes to the resulting thermal energy of the flow system ever-growing to high. The concentration profile was diminutions through growing in the Brownian motion parameter. The irreversibility and irreversibility ratio were obtained mathematically and explained concerning the notable parameters. The magnetic parameter was to diminish the irreversibility rate, but it was augmented by increasing the parameter for the relaxation and retardation times ratio. Effect of thermal radiation, variable thermal conductivity, pressure gradient, buoyancy force and thermophoresis on the Jeffery nanofluid in a microchannel by the Buongiorno model have been inspected for the first time. The effects of this works are innovative and original.


Author(s):  
K. Muhammad ◽  
T. Hayat ◽  
A. Alsaedi

This research reports stagnation flow of Jeffrey nanofluid toward a permeable stretching cylinder. Brownian motion, thermophoresis, thermal radiation and viscous dissipation are explored. Convective heat-mass conditions are implemented. Moreover, activation energy is taken into account. Transformations (variables) are utilized in order to convert PDEs (Partial DIfferential Equations). (continuity, momentum, energy and concentration equation) into ODEs (Ordinary Differential Equations). Resulting systems are solved by the optimal homotopy analysis method. Behaviors of involved flow, heat and mass transport parameters for velocity, concentration and temperature are examined. Surface friction and Sherwood number and Nusselt numbers are also examined. Velocity of the fluid can be minimized by higher estimations of parameter due to ratio of relaxation and retardation time, suction and injection parameters. Decay in fluid temperature is observed for higher Prandtl number and Deborah number for relaxation time parameter. Skin friction coefficient is controlled via higher values of parameter due to ratio of relaxation and retardation time. Intensification in heat transfer rate (Nusselt number) is seen via higher values of parameter due to ratio of relaxation and retardation time, radiation parameter, Prandtl number and Deborah number for relaxation time and curvature parameter.


Author(s):  
Syazwani Mohd Zokri ◽  
Nur Syamilah Arifin ◽  
Abdul Rahman Mohd Kasim ◽  
Norhaslinda Zullpakkal ◽  
Mohd Zuki Salleh

Convectively heated Jeffrey nanofluid flow in the presence of magnetic field and thermal radiation is investigated from a moving plate. Parameter of Brownian motion from Boungiorno model is the imperative mechanism that contributes to the heat transfer enhancement. Governing equations, consisting of the continuity, momentum, energy and nanoparticle concentrations equations are transformed into dimensionless form by means of the appropriate similarity transformation variables. Numerical results via Runge-Kutta Fehlberg Fourth-Fifth order (RKF45) method are specifically acquired on the impact of physical parameters such as Brownian motion, magnetic parameter, ratio of relaxation to retardation and radiation parameters over the temperature and nanoparticles concentration profiles. Comparison of the present results with existing published studies has validated the accuracy of the numerical solutions. Graphical representation of different magnetic parameters has caused the increment in both temperature and nanoparticles concentration profiles. On the other hand, enhancement of Brownian motion has intensified the temperature but declined the nanoparticles concentration.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jawad Ahmad ◽  
Farhad Ali ◽  
Saqib Murtaza ◽  
Ilyas Khan

This article aims to examine Jeffery nanofluid with joint effects of mass and heat transfer in a horizontal channel. The classical model is transferred to the Caputo fractional model by using the generalized Fourier’s and Fick’s laws. The nanofluids are formed by dispersing two different nanoparticles, silver and copper, into a based fluid. A novel transformation has been applied to the mass and energy equation and then solved by using the sine Fourier and the Laplace transformation jointly. The exact solution is given in terms of a special function, that is, the Mittag-Leffler function. The Sherwood number and Nusselt number are calculated and displayed in the tabular form. The effect of embedded parameters on the velocity, concentration, and temperature profile is discussed graphically. It is noted that the heat transfer rate of EO is improved by 28.24% when the volume fraction of Ag nanoparticles is raised from 0.00 to 0.04.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Hakeem Ullah ◽  
Abdelaziz Alsubie ◽  
Mehreen Fiza ◽  
Nawaf N. Hamadneh ◽  
Saeed Islam ◽  
...  

This research article deals with the nonlinear thermally radiated influences on non-Newtonian nanofluid considering Jeffrey fluid in a rotating system. The governing equations of the nanofluid have been transformed to a set of differential nonlinear equations, using suitable similarity variables. The Homotopy Analysis Method (HAM) and Runge–Kutta Method of order 4 (RK Method of order 4) are used for the solution of the modeled problem. The variation of the skin friction, Nusselt number, Sherwood number, and their impacts on the velocity distribution, temperature distribution, and concentration distribution have been examined. The influence of the Hall effect, rotation, Brownian motion, porosity, and thermophoresis analysis are also investigated. Moreover, for comprehension of the physical presentation of the embedded parameters, Deborah number β , viscosity parameter R , rotation parameter Kr , Brownian motion parameter Nb , porosity parameter γ , magnetic parameter M , Prandtl number Pr , thermophoretic parameter Nt , and Schmidt number Sc have been plotted and deliberated graphically. For large values of Brownian parameter, the kinetic energy increases, which in turn increases the temperature distribution, while the thermal boundary layer thickness decreases by increasing the radiation parameter, and the Hall parameter increases the motion of the fluid in horizontal direction. Also, the mass flux has been observed as a decreasing function at the lower stretching plate.


Sign in / Sign up

Export Citation Format

Share Document