multicast routing
Recently Published Documents


TOTAL DOCUMENTS

2225
(FIVE YEARS 161)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-27
Author(s):  
Gaurav Singal ◽  
Vijay Laxmi ◽  
Manoj Singh Gaur ◽  
D. Vijay Rao ◽  
Riti Kushwaha ◽  
...  

Multicast communication plays a pivotal role in Edge based Mobile Ad hoc Networks (MANETs). MANETs can provide low-cost self-configuring devices for multimedia data communication that can be used in military battlefield, disaster management, connected living, and public safety networks. A Multicast communication should increase the network performance by decreasing the bandwidth consumption, battery power, and routing overhead. In recent years, a number of multicast routing protocols (MRPs) have been proposed to resolve above listed challenges. Some of them are used for dynamic establishment of reliable route for multimedia data communication. This article provides a detailed survey of the merits and demerits of the recently developed techniques. An ample study of various Quality of Service (QoS) techniques and enhancement is also presented. Later, mesh topology-based MRPs are classified according to enhancement in routing mechanism and QoS modification. This article covers the most recent, robust, and reliable QoS-aware mesh based MRPs, classified on the basis of their operational features, and pros and cons. Finally, a comparative study has been presented on the basis of their performance parameters on the proposed protocols.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8255
Author(s):  
R. Thenmozhi ◽  
B. Amutha ◽  
Sreeram Valsalakumar ◽  
Thundil Karuppa Raj Rajagopal ◽  
Senthilarasu Sundaram

The impact of multimedia in day-to-day life and its applications will be increased greatly with the proposed model (MSVPC)–5G Multicast SDN network eminence video transmission obtained using PSO and cross layer progress in wireless nodes. The drone inspection and analysis in a solar farm requires a very high number of transmissions of various videos, data, animations, along with all sets of audio, text and visuals. Thus, it is necessary to regulate the transmissions of various videos due to a huge amount of bandwidth requirement for videos. A software-defined network (SDN) enables forwarder selection through particle swarm optimization (PSO) mode for streaming video packets through multicast routing transmissions. Transmission delay and packet errors are the main factors in selecting a forwarder. The nodes that transfer the videos with the shortest delay and the lowest errors have been calculated and sent to the destination through the forwarder. This method involves streaming to be increased with the highest throughput and less delay. Here, the achieved throughput is shown as 0.0699412 bits per second for 160 s of simulation time. Also, the achieved packet delivery ratio is 81.9005 percentage for 150 nodes on the network. All these metrics can be changed according to the network design and can have new results. Thus, the application of MSVPC- 5G Multicast SDN Network Eminence Video Transmission in drone thermal imaging helps in monitoring solar farms more effectively, and may lead to the development of certain algorithms in prescriptive analytics which recommends the best practices for solar farm development.


Author(s):  
Jiayan Xiong ◽  
Zhen Xu ◽  
Zhiqi Dai

Dynamic routing and congestion control are two major problems in software-defined hybrid satellite-terrestrial multicast networks research. Due to terrestrial users being allowed to join or leave the multicast group at any time and the differences between the satellite and the terrestrial networks, many multicast routing algorithms reroute rapidly and thus increase the rerouting overheads. Meanwhile, the congestion ratio is increased by some hot nodes of satellite-terrestrial link transmission paths. This paper focuses on rerouting overheads and congestion problems in satellite-terrestrial multicast networks. We present a satellite-terrestrial network architecture with the Software-Defined Networking (SDN) features to offer dynamic multicast services for terrestrial users. A Two-Layered Shared Tree Multicast (TSTM) routing algorithm is proposed to achieve efficient dynamic multicast group management, address the trade-off between bandwidth consumption and rerouting overheads. The algorithm also implements congestion control by using a load factor to reflect on the global network bandwidth usage in routing calculations. This algorithm balances the rerouting frequencies of satellite and terrestrial networks to decrease the rerouting overheads and also reduces the network congestion ratio. The simulation shows TSTM decreases rerouting cost, user time delay, and node congestion ratio compared with the locality-aware multicast approach (LAMA).


2021 ◽  
Vol 11 (18) ◽  
pp. 8645
Author(s):  
Davide Careglio ◽  
Fernando Agraz ◽  
Dimitri Papadimitriou

With the globalisation of the multimedia entertainment industry and the popularity of streaming and content services, multicast routing is (re-)gaining interest as a bandwidth saving technique. In the 1990’s, multicast routing received a great deal of attention from the research community; nevertheless, its main problems still remain mostly unaddressed and do not reach the acceptance level required for its wide deployment. Among other reasons, the scaling limitation and the relative complexity of the standard multicast protocol architecture can be attributed to the conventional approach of overlaying the multicast routing on top of the unicast routing topology. In this paper, we present the Greedy Compact Multicast Routing (GCMR) scheme. GMCR is characterised by its scalable architecture and independence from any addressing and unicast routing schemes; more specifically, the local knowledge of the cost to direct neighbour nodes is enough for the GCMR scheme to properly operate. The branches of the multicast tree are constructed directly by the joining destination nodes which acquire the routing information needed to reach the multicast source by means of an incremental two-stage search process. In this paper we present the details of GCMR and evaluate its performance in terms of multicast tree size (i.e., the stretch), the memory space consumption, the communication cost, and the transmission cost. The comparative performance analysis is performed against one reference algorithm and two well-known protocol standards. Both simulation and emulation results show that GCMR achieves the expected performance objectives and provide the guidelines for further improvements.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2011
Author(s):  
Wanida Khamprapai ◽  
Cheng-Fa Tsai ◽  
Paohsi Wang ◽  
Chi-En Tsai

A test suite is a set of test cases that evaluate the quality of software. The aim of whole test suite generation is to create test cases with the highest coverage scores possible. This study investigated the efficiency of a multiple-searching genetic algorithm (MSGA) for whole test suite generation. In previous works, the MSGA has been effectively used in multicast routing of a network system and in the generation of test cases on individual coverage criteria for small- to medium-sized programs. The performance of the algorithms varies depending on the problem instances. In this experiment were generated whole test suites for complex programs. The MSGA was expanded in the EvoSuite test generation tool and compared with the available algorithms on EvoSuite in terms of the number of test cases, the number of statements, mutation score, and coverage score. All algorithms were evaluated on 14 problem instances with different corpus to satisfy multiple coverage criteria. The problem instances were Java open-source projects. Findings demonstrate that the MSGA generated test cases reached greater coverage scores and detected a larger number of faults in the test class when compared with the others.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hamdy H. El-Sayed ◽  
A. Younes ◽  
Fahad A. Alghamdi

Tremendous evaluation of wireless mobile communication needs more efficient algorithms for communication systems. The use of conventional single-objective optimization algorithms may be unsuitable for real applications, because they act to the detriment of the rest of the performance parameters like lifetime network, delay, cost, and hop count; for this reason, multiobjective is needed. This paper presents performance evaluation and compares between the Multicast MDSR and MAODV with MACO. The proposed MDSR is concerned with change of the route discovery phase, where the route selection is based on the shortest path of route reply packets on the route with calculating the number of hop counts. Also, this article compares our MDSR modification with the evaluation algorithm based on Ant Colony Optimization (ACO), which finds the best path and multicast tree optimizes total weight (cost, delay, and hop count) of the multicast tree using multiobjective. Experimental results proved that the proposed MDSR algorithm is more efficient than MAODV and MACO in the total weight (cost, delay, and hop count), respectively. Moreover, the MACO outperforms MAODV for multicast routing problem.


Sign in / Sign up

Export Citation Format

Share Document