schröder paths
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 344 (2) ◽  
pp. 112209
Author(s):  
Sheng-Liang Yang ◽  
Mei-yang Jiang

10.37236/9571 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Andrew Elvey Price ◽  
Alan D. Sokal

We find a Thron-type continued fraction (T-fraction) for the ordinary generating function of the Ward polynomials, as well as for some generalizations employing a large (indeed infinite) family of independent indeterminates. Our proof is based on a bijection between super-augmented perfect matchings and labeled Schröder paths, which generalizes Flajolet's bijection between perfect matchings and labeled Dyck paths.


2020 ◽  
Vol 36 (5) ◽  
pp. 1489-1502
Author(s):  
Lin Yang ◽  
Sheng-Liang Yang

2020 ◽  
Vol 343 (5) ◽  
pp. 111826
Author(s):  
Lin Yang ◽  
Sheng-Liang Yang

10.37236/7799 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Veronika Irvine ◽  
Stephen Melczer ◽  
Frank Ruskey

Inspired by a new mathematical model for bobbin lace, this paper considers finite lattice paths formed from the set of step vectors $\mathfrak{A}=$$\{\rightarrow,$ $\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$ with the restriction that vertical steps $(\uparrow, \downarrow)$ cannot be consecutive. The set $\mathfrak{A}$ is the union of the well known Motzkin step vectors $\mathfrak{M}=$$\{\rightarrow,$ $\nearrow,$ $\searrow\}$ with the vertical steps $\{\uparrow, \downarrow\}$. An explicit bijection $\phi$ between the exhaustive set of vertically constrained paths formed from $\mathfrak{A}$ and a bisection of the paths generated by $\mathfrak{M}S$ is presented. In a similar manner, paths with the step vectors $\mathfrak{B}=$$\{\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$, the union of Dyck step vectors and constrained vertical steps, are examined.  We show, using the same $\phi$ mapping, that there is a bijection between vertically constrained $\mathfrak{B}$ paths and the subset of Motzkin paths avoiding horizontal steps at even indices.  Generating functions are derived to enumerate these vertically constrained, partially directed paths when restricted to the half and quarter-plane.  Finally, we extend Schröder and Delannoy step sets in a similar manner and find a bijection between these paths and a subset of Schröder paths that are smooth (do not change direction) at a regular horizontal interval.


2018 ◽  
Vol 153 (1) ◽  
pp. 103-119
Author(s):  
Nancy S. S. Gu ◽  
Li-Jun Hao
Keyword(s):  

2017 ◽  
Vol Vol. 18 no. 2, Permutation... (Permutation Patterns) ◽  
Author(s):  
Michael W. Schroeder ◽  
Rebecca Smith

We consider a sorting machine consisting of two stacks in series where the first stack has the added restriction that entries in the stack must be in decreasing order from top to bottom. The class of permutations sortable by this machine are known to be enumerated by the Schröder numbers. In this paper, we give a bijection between these sortable permutations of length $n$ and Schröder paths -- the lattice paths from $(0,0)$ to $(n-1,n-1)$ composed of East steps $(1,0)$, North steps $(0,1)$, and Diagonal steps $(1,1)$ that travel weakly below the line $y=x$.


10.37236/6719 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Suhyung An ◽  
JiYoon Jung ◽  
Sangwook Kim

In this paper we enumerate the number of $(k, r)$-Fuss-Schröder paths of type $\lambda$. Y. Park and S. Kim studied small Schröder paths with type $\lambda$. Generalizing the results to small $(k, r)$-Fuss-Schröder paths with type $\lambda$, we give a combinatorial interpretation for the number of small $(k, r)$-Fuss-Schröder paths of type $\lambda$ by using Chung-Feller style. We also give two sets of sparse noncrossing partitions of $[2(k + 1)n + 1]$ and $[2(k + 1)n + 2]$ which are in bijection with the set of all small and large, respectively, $(k, r)$-Fuss-Schröder paths of type $\lambda$.


10.37236/5659 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Youngja Park ◽  
Sangwook Kim

Large Schröder paths, sparse noncrossing partitions, partial horizontal strips, and $132$-avoiding alternating sign matrices are objects enumerated by Schröder numbers. In this paper we give formula for the number of Schröder objects with given type and number of connected components. The proofs are bijective using Chung-Feller style. A bijective proof for the number of Schröder objects with given type is provided. We also give a combinatorial interpretation for the number of small Schröder paths.


10.37236/4793 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Xiang-Ke Chang ◽  
Xing-Biao Hu ◽  
Hongchuan Lei ◽  
Yeong-Nan Yeh

In this paper we give a combinatorial proof of an addition formula for weighted partial Motzkin paths. The addition formula allows us to determine the $LDU$ decomposition of a Hankel matrix of the polynomial sequence defined by weighted partial Motzkin paths. As a direct consequence, we get the determinant of the Hankel matrix of certain combinatorial sequences. In addition, we obtain an addition formula for weighted large Schröder paths.


Sign in / Sign up

Export Citation Format

Share Document