seismic location
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Timothy Craig ◽  
Steven Gibbons

A low-magnitude earthquake was recorded on January 18, 2017, in the T\'{e}n\'{e}r\'{e} desert in Niger. This intraplate region is exceptionally sparsely covered with seismic stations and the closest open seismic station, G.TAM in Algeria at a distance of approximately 600 km, was unusually and unfortunately not operational at the time of the event. Body-wave magnitude estimates range from $m_b 4.2$ to $m_b 4.6$ and both seismic location and magnitude constraints are dominated by stations at teleseismic distances. The seismic constraints are strengthened considerably by array stations of the International Monitoring System for verifying compliance with the Comprehensive Nuclear Test-Ban-Treaty. This event, with magnitude relevant to low-yield nuclear tests, provides a valuable validation of the detection and location procedure for small land-based seismic disturbances at significant distances. For seismologists not in the CTBT system, the event is problematic as data from many of the key stations are not openly available. We examine the uncertainty in published routinely-determined epicenters by performing multiple Bayesloc location estimates with published arrival times considering both all published arrival times and those from open stations only. This location exercise confirms lateral uncertainties in seismologically-derived location no smaller than 10 km. Coherence for InSAR in this region is exceptionally high, and allows us to confidently detect a displacement of the order 6 mm in the time-frame containing the earthquake, consistent with the seismic location estimates, and with a lateral length scale consistent with an earthquake of this size, allowing location constraint to within one rupture length ($\leq 5$ km) -- significantly reducing the lateral uncertainty compared with relying on seismological data only. Combining Open Access-only seismological and geodetic data, we precisely constrain the source location, and conclude that this earthquake likely had a shallow source. We then discuss potential ways to continue the integration of geodetic data in the calibration of seismological earthquake location.


Author(s):  
Hafidh A. A. Ghalib ◽  
Gordon Kraft ◽  
Abdulmutaleb Alchalbi ◽  
Robert Wagner

Abstract On 4 August 2020 Lebanon’s capital, Beirut, was rocked by a sequence of colocated fires and chemical explosions that left hundreds of people dead, thousands injured and homeless, demolished the city’s seaport, and heavily damaged the surrounding neighborhoods and businesses. The event was well recorded by many regional seismic stations in and around the eastern Mediterranean Sea. Using a network of 58 stations, 105 regional seismic phases, and a Bayesian methodology places the event at 1.8 km south of the ground-truth location, the seaport warehouse. Achieving this accuracy is significant, considering very limited local seismic data were available to use in this study. The location bias is attributed, in large part, to a small but statistically significant difference in the Moho velocity for sea paths compared with continental paths. The depth to the Moho is generally consistent with the iasp91 model. Concurrent to the port explosion is a series of unrelated small explosions, 11 s apart, attributed to a seismic survey that was being carried out at the time in the eastern Mediterranean Sea using air guns.


Geophysics ◽  
2021 ◽  
pp. 1-49
Author(s):  
Shaojiang Wu ◽  
Yibo Wang ◽  
Fei Xie ◽  
Xu Chang

Locating microseismic sources is critical to monitor the hydraulic fractures that occur during fluid extraction/injection in unconventional oil or gas exploration. Waveform-based seismic location methods can reliably and automatically image weak microseismic source locations without phase picking. Among them, the cross-correlation migration (CCM) method can avoid excitation time scanning by generating virtual gathers. We propose a CCM location method based on the hybrid imaging condition (HIC). There are four main steps in the implementation of this method: 1) selection of receivers with good azimuthal coverage; 2) generation of virtual gathers by correlating the reference receiver with the rest of the receivers; 3) summation of back-projections in the virtual gathers; and 4) multiplication of all summations. The CCM-HIC method was tested on synthetic and field datasets, and the results were compared with those obtained by conventional summation imaging condition (SIC) and multiplication imaging condition (MIC). The comparison results demonstrate that the CCM-HIC is sufficiently robust to obtain better stability and higher spatial resolution image of source location, despite the presence of strong noise.


Author(s):  
Stephen Arrowsmith ◽  
Junghyun Park ◽  
Il-Young Che ◽  
Brian Stump ◽  
Gil Averbuch

Abstract Locating events with sparse observations is a challenge for which conventional seismic location techniques are not well suited. In particular, Geiger’s method and its variants do not properly capture the full uncertainty in model parameter estimates, which is characterized by the probability density function (PDF). For sparse observations, we show that this PDF can deviate significantly from the ellipsoidal form assumed in conventional methods. Furthermore, we show how combining arrival time and direction-of-arrival constraints—as can be measured by three-component polarization or array methods—can significantly improve the precision, and in some cases reduce bias, in location solutions. This article explores these issues using various types of synthetic and real data (including single-component seismic, three-component seismic, and infrasound).


2020 ◽  
Author(s):  
Michael Begnaud ◽  
Christine Gammans ◽  
Ellen Syracuse ◽  
Jonathan MacCarthy

2020 ◽  
Author(s):  
Michael Begnaud ◽  
Sanford Ballard ◽  
Andrea Conley ◽  
Patrick Hammond ◽  
Christopher Young

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4729
Author(s):  
Lei Li ◽  
Yujiang Xie ◽  
Jingqiang Tan

Seismic source location specifies the spatial and temporal coordinates of seismic sources and lays the foundation for advanced seismic monitoring at all scales. In this work, we firstly introduce the principles of diffraction stacking (DS) and cross-correlation stacking (CCS) for seismic location. The DS method utilizes the travel time from the source to receivers, while the CCS method considers the differential travel time from pairwise receivers to the source. Then, applications with three field datasets ranging from small-scale microseismicity to regional-scale induced seismicity are presented to investigate the feasibility, imaging resolution, and location reliability of the two stacking operators. Both of the two methods can focus the source energy by stacking the waveforms of the selected events. Multiscale examples demonstrate that the imaging resolution is not only determined by the inherent property of the stacking operator but also highly dependent on the acquisition geometry. By comparing to location results from other methods, we show that the location bias is consistent with the scale size, as well as the frequency contents of the seismograms and grid spacing values.


2020 ◽  
Author(s):  
Antoine L. Turquet ◽  
Renaud Toussaint ◽  
Fredrik K. Eriksen ◽  
Eirik Grude Flekkøy ◽  
Knut Jørgen Måløy

<p>An earthquake can happen due to many different phenomena such as sliding faults, fluid/gas injection into the subsurface or volcanic activities. Understanding the cause of earthquakes is one important step towards a better hazard assessment and better mitigation. In this study, we explore the physics behind different types of earthquakes by inducing similar mechanics in lab-scale experiments using an analogous model. Inside a transparent rectangular Hele-Shaw cell, we induce lab-scale microseismicity via pneumatic fracturing. An 80 x 40 cm transparent setup is prepared using a 1 mm thin layer of uncompacted granular medium having a fixed grain size is placed between two glass plates.<br>The seismic location results are compared with the image correlation results for displacement maps corresponding to the event times. Using air injection, this porous medium is compacted and fractured. This system is monitored using a camera recording 1000 images per second and accelerometers recording with 1 MHz sampling rate. Sources of earthquake-like vibrations are both located using acoustic recordings and image processing. We have observed that the deformation starts with compaction inside the medium; this compaction propagates toward the channel tips and causes the fingers to advance further inside the medium. We have observed (using optics and acoustics) that the movement starts inside the porous medium and progresses toward the channel tips, eventually causing channels to grow further. We also compared the characteristic patterns in these lab-scale events that are very similar to large scale correspondents, in particular with 2017 Mw 5.5 Pohang Earthquake. We reverse-engineered the signature of the recorded lab-scale signals to have a better understanding of this industrial hazard.</p>


2020 ◽  
Author(s):  
Xiangwei Yu ◽  
Qian Song ◽  
Shanquan Deng

<p>The 2017 Ms 7.0 Sichuan Jiuzhaigou earthquake occurred at the intersection of the Tazang, Minjiang, and Huya faults on the eastern margin of the Tibetan Plateau. Since it occurred on an unmarked blind fault, it is still a controversial issue whether the fault, which triggered the earthquake, was the extension of the East Kunlun fault or the northern branch of the Huya fault. Therefore, the accurate source location is of great significance for studying the deep distribution of seismogenic faults and seismicity analysis.</p><p>We have not only collected seismic phase arrival data recorded by 24 permanent stations and 6 temporary stations, but also picked up the seismic waveform data recorded by partial permanent stations in this study. Using absolute seismic location method and relative seismic location method, we relocated the earthquake events with magnitude greater than or equal to 1.0 occurred in the Jiuzhaigou area from August to December 2017. In order to ensure reliable data quality, we selected 23422 P-wave absolute arrival times, 24734 S-wave absolute arrival times and 124519 high quality P-waveform cross correlation data of 3449 earthquake events for relocation research.</p><p>The mean value of root mean square residuals of travel time of all earthquakes decrease from 0.21s to 0.08s after relocation. The average location errors in the E-W, N-S, and vertical directions are 0.11km, 0.12km, and 0.16km, respectively. Ninety-nine percent of the earthquake events are distributed in the depth range of 1-25 km, and the dominant distribution range is 5-15 km. The result shows that the earthquakes are distributed along the strike of northwest and southeast, and the Jiuzhaigou mainshock divided these events into two clusters: northwest and southeast. From the parallel strike section, we conclude that the depth of the northwest seismic cluster is shallow with the depth range of 2-15 km, and the depth of the southeast seismic cluster is deeper with the depth range of 6-18 km. Moreover, the number of aftershocks in the northwest cluster is greater than that in the southeast cluster, but after an M 4.9 aftershock occurred in the northwest cluster on the ninety-first day after the Jiuzhaigou mainshock, the number of aftershocks in the northwest cluster began to decrease. The result provides a basis for studying the seismogenic background and seismicity of the Jiuzhaigou earthquake.</p>


Sign in / Sign up

Export Citation Format

Share Document