The prescription of forest management determines the number of trees to be cut and, consequently, the harvested wood volume, which directly influences the forest operations dynamic. The objectives of this paper were (i) to analyze the effect of process factors on wood extraction performance with forwarder in first thinning and clearcutting of Pinus taeda L. plantations; and (ii) to economically determine the optimal road density to manage these plantations. Time and motion studies at the cycle element level were conducted to quantify and model the time consumption, productivity, and operational costs of the extraction. The optimal road density (ORD) for both operation types (OT) was determined based on the transport geometry model, considering the minimization of the sum of unitary costs with construction and maintenance of roads, loss of productive area, and wood extraction. The extraction distance (ED), slope (SL), average log volume (LV), and OT had a significant effect on the time consumed in travels, and therefore, on productivity (PPMH). In clearcutting, the average PPMH was 12.17 m3ob PMH0-1, while, in thinning, it was 10.94 m3ob PMH0-1; however, as the ED increased, the difference of PPMH and the cost of extraction between the operations decreased, which highlighted a greater effect of this factor on forwarder’s work in clearcutting. For this reason, the ORD for clearcutting (37.76 m ha-1) was higher than for thinning (27.84 m ha-1). Therefore, we demonstrated in this study that the type of operation and forest management regime, as well as their interaction with process factors, affect the sizing of the number of roads per unit area, and also the costs of the forest activity.