gap opening
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 87)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hailan Luo ◽  
Qiang Gao ◽  
Hongxiong Liu ◽  
Yuhao Gu ◽  
Dingsong Wu ◽  
...  

AbstractThe Kagome superconductors AV3Sb5 (A = K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission measurements on KV3Sb5. We have observed CDW-induced Fermi surface reconstruction and the associated band folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zones. The Fermi surface- and momentum-dependent CDW gap is measured and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface. In particular, we have observed signatures of the electron-phonon coupling in KV3Sb5. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV3Sb5 superconductors.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Kentaro Ukita ◽  
Kanako Otomune ◽  
Ryo Fujimoto ◽  
Kanako Hasegawa ◽  
Koichi Izumikawa ◽  
...  

2021 ◽  
Vol 5 (12) ◽  
Author(s):  
A. K. Kaveev ◽  
S. M. Suturin ◽  
V. A. Golyashov ◽  
K. A. Kokh ◽  
S. V. Eremeev ◽  
...  

2021 ◽  
pp. 1-20
Author(s):  
Samuel H. Doyle ◽  
Bryn Hubbard ◽  
Poul Christoffersen ◽  
Robert Law ◽  
Duncan R. Hewitt ◽  
...  

Abstract Subglacial hydrology modulates basal motion but remains poorly constrained, particularly for soft-bedded Greenlandic outlet glaciers. Here, we report detailed measurements of the response of subglacial water pressure to the connection and drainage of adjacent water-filled boreholes drilled through kilometre-thick ice on Sermeq Kujalleq (Store Glacier). These measurements provide evidence for gap opening at the ice-sediment interface, Darcian flow through the sediment layer, and the forcing of water pressure in hydraulically-isolated cavities by stress transfer. We observed a small pressure drop followed by a large pressure rise in response to the connection of an adjacent borehole, consistent with the propagation of a flexural wave within the ice and underlying deformable sediment. We interpret the delayed pressure rise as evidence of no pre-existing conduit and the progressive decrease in hydraulic transmissivity as the closure of a narrow (< 1.5 mm) gap opened at the ice-sediment interface, and a reversion to Darcian flow through the sediment layer with a hydraulic conductivity of ≤ 10−6 m s−1. We suggest that gap opening at the ice-sediment interface deserves further attention as it will occur naturally in response to the rapid pressurisation of water at the bed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. M. Shikin ◽  
A. A. Rybkina ◽  
D. A. Estyunin ◽  
I. I. Klimovskikh ◽  
A. G. Rybkin ◽  
...  

AbstractPolar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7874
Author(s):  
Yoshifumi Jodai ◽  
Yutaka Hara

This study aimed to determine the optimal rotor spacing of two vertical-axis wind turbines, which are simulated by miniature models arranged side-by-side with a relatively low aspect ratio. Wind tunnel experiments with a pair of 3-D printed model rotors were conducted at a uniform velocity. A series of experiments were conducted involving both incremental adjustments to the rotor gaps, g, and the rotational direction of each rotor. Increases in the power and the related flow patterns were observed in all three arrangements: Co-Rotating (CO), Counter-Up (CU), and Counter-Down (CD). The maximum phase-synchronized rotational speed occurs at the narrowest gap in the CD arrangement. Meanwhile, local maxima arise in the CO and CU arrangements at g/D < 1, where D is the rotor diameter. From an engineering perspective, the optimal rotor spacing is g/D = 0.2 with the CO arrangement, using the same two rotors rotating in the same direction. Based on flow visualization using a smoke-wire method at a narrower gap opening of 0.2D, the wake width in the case of the CU arrangement was remarkably narrower than those obtained in the CO and CD arrangements. In the CU arrangement, a movement towards the center of the rotor pair of the nominal front-stagnation point of each rotor was confirmed via flow visualization. This finding explains a reduction tendency in the rotational speed of the rotors via a reduction in the lift in the CU arrangement.


2021 ◽  
Vol 118 (47) ◽  
pp. e2105190118
Author(s):  
Sunghun Kim ◽  
Jong Mok Ok ◽  
Hanbit Oh ◽  
Chang Il Kwon ◽  
Yi Zhang ◽  
...  

Complex electronic phases in strongly correlated electron systems are manifested by broken symmetries in the low-energy electronic states. Some mysterious phases, however, exhibit intriguing energy gap opening without an apparent signature of symmetry breaking (e.g., high-TC cuprates and heavy fermion superconductors). Here, we report an unconventional gap opening in a heterostructured, iron-based superconductor Sr2VO3FeAs across a phase transition at T0 ∼150 K. Using angle-resolved photoemission spectroscopy, we identify that a fully isotropic gap opens selectively on one of the Fermi surfaces with finite warping along the interlayer direction. This band selectivity is incompatible with conventional gap opening mechanisms associated with symmetry breaking. These findings, together with the unusual field-dependent magnetoresistance, suggest that the Kondo-type proximity coupling of itinerant Fe electrons to localized V spin plays a role in stabilizing the exotic phase, which may serve as a distinct precursor state for unconventional superconductivity.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1563
Author(s):  
Silvio Bagnato ◽  
Pasquale A. Marziliano ◽  
Maria Sidari ◽  
Carmelo Mallamaci ◽  
Federica Romeo ◽  
...  

The present study was focused on how cardinal directions inside gaps of different sizes (small, 200 m2; medium, 400 m2; and large, 600 m2) can affect soil characteristics and tree regeneration. Additionally, the effects of gap size on the growth dynamics of trees outside the gaps were evaluated. The study was carried out in a European beech stand located in Aspromonte National Park (Southern Apennines, Calabria, Italy). Microclimatic variables, physical, chemical, and biochemical soil properties, natural regeneration density, and growth trees outside the gaps density of natural regeneration were assessed. This study provided evidence for an important effect of cardinal points on micro-environmental parameter variability, nutrient cycle, physic-chemical soil properties, water availability, and biological processes such as trees growth and regeneration. The European beech natural regeneration was most abundant in the south part of the gaps. Thus, we can state that cardinal points affect the trees natural regeneration in a species-specific manner. The new microclimatic conditions due to the gap opening had positive effects on the tree growth located along the gap edge, especially in the trees sampled on the edges of the medium gaps. On the contrary, the trees located in the forest recorded a productivity coherent with the period prior the gap opening. In medium-sized gaps, the combination and interaction of microclimatic and soil parameters (humification and mineralization process and microbial activity) created the best conditions for beech natural regeneration and favored an increase in the productivity of the trees at the edge of the gaps.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1786
Author(s):  
Xianyan Zhou ◽  
Torgeir Welo ◽  
Jun Ma ◽  
Sigmund A. Tronvoll

Dimensional accuracy of incoming components is crucial for automated welding and assembly in mass volume production. However, thin-walled extrusions made to industrial standards show severe dimensional variations, including gap opening, sidewall inclination, local convexity, and so on. Thus, one major challenge is to provide a low-cost correction method to improve the dimensional accuracy at a level demanded by automated assembly and/or product fit-up. A novel correction method called transverse stretch and local bending (TSLB) has recently been developed, enabling one to efficiently correct the dimensional deviations in thin-walled, U-channel profiles at a low cost. However, the lack of in-depth understanding of the underlying mechanism makes it challenging to efficiently optimise and control the process. In this study, the feasibility of this new technique was experimentally validated by four groups of TSLB tests with different profile dimensions, showing a dimensional accuracy improvement of about 92% compared with the as-received parts. The evolution of the critical dimensional characteristics, including gap opening and bottom convexity, is analysed numerically throughout four stages consisting of inserting, releasing, calibration, and springback. It is found that the inserting stage greatly reduces the dimensional deviations in a pure bending state, while the calibration stages further minimise the deviations in the bending and transverse stretching combined state. In addition, the wedge angle of the tool is found to be critical to the dimensional accuracy improvement. The low wedge angle facilitates the correction of sidewall inclination and gap opening, while the high wedge angle contributes to mitigating bottom convexity. The overall outcome of this study enhances the fundamental understanding of the effects of in-process stretching and local-bending on the dimensional capabilities of U-channel extrusions. This can ultimately generate guidelines that will lead to new application areas of aluminium extrusions in highly competitive marketplaces.


2021 ◽  
Author(s):  
A. M. Shikin ◽  
A. A. Rybkina ◽  
D. A. Estyunin ◽  
I. I. Klimovskikh ◽  
A. G. Rybkin ◽  
...  

Abstract Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.


Sign in / Sign up

Export Citation Format

Share Document