Having its own genome makes mitochondria a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is double-stranded closed circular molecule of about 16 kb coding 37 genes. Mutations, including deletions in the mitochondrial genome can culminate in different human diseases. Mapping of the deletion junctions suggests that the breakpoints are generally seen at hotspots. '9-bp deletion' (8271-8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with '9-bp deletion', when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Besides, we reconstitute the whole process of '9-bp deletion' using purified Endonuclease G to induce breaks in mtDNA, followed by mitochondrial extract-mediated DSB repair and establish that microhomology-mediated end joining is responsible for the generation of mtDNA deletion. Finally, we show that the whole process is regulated by different stress conditions, which may modulate release of Endonuclease G to the mitochondrial matrix. Therefore, we uncover a new role for Endonuclease G in generating deletions, which is dependent on the formation of G4 DNA within the mitochondrial genome. Thus, in this study we identify a novel property of Endonuclease G, besides its role in apoptosis, and the recently described 'elimination of paternal mitochondria during fertilization.