picard groups
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 21 (6) ◽  
pp. 2703-2760
Author(s):  
Drew Heard ◽  
Guchuan Li ◽  
XiaoLin Danny Shi
Keyword(s):  

Author(s):  
Florian Eisele

Abstract Let ( K , 𝒪 , k ) {(K,\mathcal{O},k)} be a p-modular system with k algebraically closed and 𝒪 {\mathcal{O}} unramified, and let Λ be an 𝒪 {\mathcal{O}} -order in a separable K-algebra. We call a Λ-lattice L rigid if Ext Λ 1 ⁡ ( L , L ) = 0 {{\operatorname{Ext}}^{1}_{\Lambda}(L,L)=0} , in analogy with the definition of rigid modules over a finite-dimensional algebra. By partitioning the Λ-lattices of a given dimension into “varieties of lattices”, we show that there are only finitely many rigid Λ-lattices L of any given dimension. As a consequence we show that if the first Hochschild cohomology of Λ vanishes, then the Picard group and the outer automorphism group of Λ are finite. In particular, the Picard groups of blocks of finite groups defined over 𝒪 {\mathcal{O}} are always finite.


Author(s):  
Hossein Movasati ◽  
Emre Can Sertöz

Abstract We give a new practical method for computing subvarieties of projective hypersurfaces. By computing the periods of a given hypersurface X, we find algebraic cohomology cycles on X. On well picked algebraic cycles, we can then recover the equations of subvarieties of X that realize these cycles. In practice, a bulk of the computations involve transcendental numbers and have to be carried out with floating point numbers. However, if X is defined over algebraic numbers then the coefficients of the equations of subvarieties can be reconstructed as algebraic numbers. A symbolic computation then verifies the results. As an illustration of the method, we compute generators of the Picard groups of some quartic surfaces. A highlight of the method is that the Picard group computations are proved to be correct despite the fact that the Picard numbers of our examples are not extremal.


10.37236/9210 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Alexander Borisov

The classical Jacobian Conjecture asserts that every locally invertible polynomial self-map of the complex affine space is globally invertible. A Keller map is a (hypothetical) counterexample to the Jacobian Conjecture. In dimension two every such map, if exists, leads to a map between the Picard groups of suitable compactifications of the affine plane, that satisfy a complicated set of conditions. This is essentially a combinatorial problem. Several solutions to it ("frameworks") are described in detail. Each framework corresponds to a large system of equations, whose solution would lead to a Keller map. 


Sign in / Sign up

Export Citation Format

Share Document