protoplast isolation
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 52)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 23 (2) ◽  
pp. 837
Author(s):  
Sudip Biswas ◽  
Nancy J. Wahl ◽  
Michael J. Thomson ◽  
John M. Cason ◽  
Bill F. McCutchen ◽  
...  

The cultivated peanut (Arachis hypogaea L.) is a legume consumed worldwide in the form of oil, nuts, peanut butter, and candy. Improving peanut production and nutrition will require new technologies to enable novel trait development. Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR–Cas9) is a powerful and versatile genome-editing tool for introducing genetic changes for studying gene expression and improving crops, including peanuts. An efficient in vivo transient CRISPR–Cas9- editing system using protoplasts as a testbed could be a versatile platform to optimize this technology. In this study, multiplex CRISPR–Cas9 genome editing was performed in peanut protoplasts to disrupt a major allergen gene with the help of an endogenous tRNA-processing system. In this process, we successfully optimized protoplast isolation and transformation with green fluorescent protein (GFP) plasmid, designed two sgRNAs for an allergen gene, Ara h 2, and tested their efficiency by in vitro digestion with Cas9. Finally, through deep-sequencing analysis, several edits were identified in our target gene after PEG-mediated transformation in protoplasts with a Cas9 and sgRNA-containing vector. These findings demonstrated that a polyethylene glycol (PEG)-mediated protoplast transformation system can serve as a rapid and effective tool for transient expression assays and sgRNA validation in peanut.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2636
Author(s):  
Ganeshan Sivanandhan ◽  
Solhee Bae ◽  
Chaemin Sung ◽  
Su Ryun Choi ◽  
Geung-Joo Lee ◽  
...  

Chinese cabbage is an important dietary source of numerous phytochemicals, including glucosinolates and anthocyanins. The selection and development of elite Chinese cabbage cultivars with favorable traits is hindered by a long breeding cycle, a complex genome structure, and the lack of an efficient plant transformation protocol. Thus, a protoplast transfection-based transformation method may be useful for cell-based breeding and functional studies involving Chinese cabbage plants. In this study, we established an effective method for isolating Chinese cabbage protoplasts, which were then transfected with the pCAMBIA1303 binary vector according to an optimized PEG-based method. More specifically, protoplasts were isolated following a 4 h incubation in a solution comprising 1.5% (v/v) cellulase, 0.25% (v/v) macerozyme, 0.25% (v/v) pectinase, 0.5 M mannitol, 15 mM CaCl2, 25 mM KCl, 0.1% BSA, and 20 mM MES buffer, pH 5.7. This method generated 7.1 × 106 protoplasts, 78% of which were viable. The gfp reporter gene in pCAMBIA1303 was used to determine the transfection efficiency. The Chinese cabbage protoplast transfection rate was highest (68%) when protoplasts were transfected with the 40 µg binary vector for 30 min in a solution containing 40% PEG. The presence of gusA and hptII in the protoplasts was confirmed by PCR. The methods developed in this study would be useful for DNA-free genome editing as well as functional and molecular investigations of Chinese cabbage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gabriela Conti ◽  
Beatriz Xoconostle-Cázares ◽  
Gabriel Marcelino-Pérez ◽  
Horacio Esteban Hopp ◽  
Carina A. Reyes

Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.


Author(s):  
Tengfei Shen ◽  
Mengxuan Xu ◽  
Haoran Qi ◽  
Yuanheng Feng ◽  
Zhangqi Yang ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Chen ◽  
Shaofei Tong ◽  
Yuanzhong Jiang ◽  
Fandi Ai ◽  
Yanlin Feng ◽  
...  

Abstract Background Plant secondary growth depends on the activity of the vascular cambium, which produces xylem and phloem. Wood derived from xylem is the most abundant form of biomass globally and has played key socio-economic and subsistence roles throughout human history. However, despite intensive study of vascular development, the full diversity of cell types and the gene networks engaged are still poorly understood. Results Here, we have applied an optimized protoplast isolation protocol and RNA sequencing to characterize the high-resolution single-cell transcriptional landscape of highly lignified poplar stems. We identify 20 putative cell clusters with a series of novel cluster-specific marker genes and find that these cells are highly heterogeneous based on the transcriptome. Analysis of these marker genes’ expression dynamics enables reconstruction of the cell differentiation trajectories involved in phloem and xylem development. We find that different cell clusters exhibit distinct patterns of phytohormone responses and emphasize the use of our data to predict potential gene redundancy and identify candidate genes related to vascular development in trees. Conclusions These findings establish the transcriptional landscape of major cell types of poplar stems at single-cell resolution and provide a valuable resource for investigating basic principles of vascular cell specification and differentiation in trees.


2021 ◽  
Author(s):  
Dominik Lotz ◽  
Jafargholi Imani ◽  
Katrin Ehlers ◽  
Annette Becker

Abstract California poppy (Eschscholzia californica) is a member of the Ranunculales, the sister order to all other eudicots and as such in a phylogenetically highly informative position. Ranunculales are known for their diverse floral morphologies and biosynthesis of many pharmaceutically relevant alkaloids. E. californica it is widely used as model system to study the conservation of flower developmental control genes. However, within the Ranunculales, options for stable genetic manipulations are rare and genetic model systems are thus difficult to establish. Here, we present a method for the efficient and stable genetic transformation via Agrobacterium tumefaciens-mediated transformation, somatic embryo induction, and regeneration of E. californica. Further, we provide a rapid method for protoplast isolation and transformation. This allows the study of gene functions in a single-cell and full plant context to enable gene function analysis and modification of alkaloid biosynthesis pathways by e.g. genome editing techniques providing important genetic resources for the genetic model organism E. californica.


Author(s):  
Jose Avila-Peltroche ◽  
Boo Yeon Won ◽  
Tae Oh Cho

Abstract Background Protoplasts (i.e., naked plant cells) can be used for in vitro manipulations and genetic improvement in cultivars with economic value. During the last decade, protoplast research in economic brown algae has been scarce, and it is usually hampered by the use of non-commercial enzymes or crude extracts for isolating protoplasts. Dictyopteris pacifica is part of a brown algal genus well known by its wide chemical diversity and biological properties. Scytosiphon lomentaria is an edible brown seaweed with antioxidant, antitumor, and antiviral properties. So far, there are no protoplast isolation protocols using commercial enzymes for these two economic brown algae. In this study, we obtained protoplasts from cultured samples of D. pacifica and S. lomentaria using commercially available enzymes. Additionally, we investigated the effects of Driselase inclusion and Ca-chelation pre-treatment on protoplast yields in order to optimize the conditions for protoplast preparations. Results Protoplasts were isolated from Dictyopteris pacifica and Scytosiphon lomentaria using the commercially available Cellulase Onozuka RS (1%) and Alginate lyase (4 U mL−1), and short incubation time (4 h). Driselase did not show significant effects on protoplast production in both species. Ca-chelation pre-treatment only increased the number of protoplasts in D. pacifica. Under optimal conditions, the protoplast yields from D. pacifica and S. lomentaria were 4.83 ± 2.08 and 74.64 ± 32.49 × 106 protoplasts g−1 fresh weight, respectively. The values obtained for S. lomentaria were 2–3 orders of magnitude higher than previously reported. Conclusions Our results show that high protoplast yields can be obtained from D. pacifica and S. lomentaria using a simple mixture of commercial enzymes (Cellulase RS and Alginate lyase) and short incubation time (4 h). This work also represents the first report of protoplast isolation in D. pacifica. The method proposed here can help to expand protoplast technology in more brown algal species.


2021 ◽  
Vol 286 ◽  
pp. 110193
Author(s):  
Su-Fang Li ◽  
Tian-Wen Ye ◽  
Xin Xu ◽  
De-Yi Yuan ◽  
Shi-Xin Xiao

Sign in / Sign up

Export Citation Format

Share Document