pheochromocytoma pc12
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 17)

H-INDEX

41
(FIVE YEARS 1)

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Marta R. Casanova ◽  
Rui L. Reis ◽  
Albino Martins ◽  
Nuno M. Neves

Peripheral nerve injury still remains a major clinical challenge, since the available solutions lead to dysfunctional nerve regeneration. Even though autologous nerve grafts are the gold standard, tissue engineered nerve guidance grafts are valid alternatives. Nerve growth factor (NGF) is the most potent neurotrophic factor. The development of a nerve guidance graft able to locally potentiate the interaction between injured neurons and autologous NGF would be a safer and more effective alternative to grafts that just release NGF. Herein, a biofunctional electrospun fibrous mesh (eFM) was developed through the selective retrieval of NGF from rat blood plasma. The neurite outgrowth induced by the eFM-NGF systems was assessed by culturing rat pheochromocytoma (PC12) cells for 7 days, without medium supplementation. The biological results showed that this NGF delivery system stimulates neuronal differentiation, enhancing the neurite growth more than the control condition.


NeuroSci ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 383-399
Author(s):  
Trevor N. Carniello ◽  
Robert M. Lafrenie ◽  
Blake T. Dotta

Previous research has demonstrated that pheochromocytoma (PC12) cells treated with forskolin provides a model for the in vitro examination of neuritogenesis. Exposure to electromagnetic fields (EMFs), especially those which have been designed to mimic biological function, can influence the functions of various biological systems. We aimed to assess whether exposure of PC12 cells treated with forskolin to patterned EMF would produce more plasma membrane extensions (PME) as compared to PC12 cells treated with forskolin alone (i.e., no EMF exposure). In addition, we aimed to determine whether the differences observed between the proportion of PME of PC12 cells treated with forskolin and exposed to EMF were specific to the intensity, pattern, or timing of the applied EMF. Our results showed an overall increase in PME for PC12 cells treated with forskolin and exposed to Burst-firing EMF as compared to PC12 cells receiving forskolin alone. No other patterned EMF investigated were deemed to be effective. Furthermore, intensity and timing of the Burst-firing pattern did not significantly alter the proportion of PME of PC12 cells treated with forskolin and exposed to patterned EMF.


2021 ◽  
pp. 096032712110516
Author(s):  
Xue-song Wang ◽  
Long-cheng Li ◽  
Xue Zhang ◽  
Jin Gao

Objective Ketamine is an anesthetic that induces neurotoxicity when administered at high doses. In this work, we explored the protective effects of lipoxin A4 methyl ester (LXA4 ME) against ketamine-induced neurotoxicity and the underlying protective mechanism in pheochromocytoma (PC12) cells. Methods PC12 cells were treated with 50 μM of ketamine and different LXA4 ME concentrations of LXA4 ME (5–50 nM) for 24 h, and their viability, apoptosis, and oxidative status were assessed. Results Quantitative real-time polymerase chain reaction experiments showed that ketamine downregulated miR-22 expression and upregulated Bcl-2-associated athanogene 5 (BAG5) in PC12 cells in a concentration-dependent manner. LXA4 ME induced the opposite effects, thus attenuating ketamine-induced neurotoxicity. Further in vitro assays showed that miR-22 directly targeted BAG5, thus promoting cell viability by suppressing cell apoptosis and oxidative stress. Under expression miR-22 or upregulation of BAG5 antagonized the effects of LXA4 ME. Conclusion LXA4 ME can protect PC12 cells from ketamine-induced neurotoxicity by activating the miR-22/BAG5 signaling pathway. Thus, LXA4 ME can be used as a protective drug against ketamine-induced neural damage.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2493
Author(s):  
Larisa Ryskalin ◽  
Stefano Puglisi-Allegra ◽  
Gloria Lazzeri ◽  
Francesca Biagioni ◽  
Carla L. Busceti ◽  
...  

Curcumin (CUR), a natural polyphenol extracted from rhizome of the Curcuma longa L, has received great attention for its multiple potential health benefits as well as disease prevention. For instance, CUR protects against toxic agents acting on the human body, including the nervous system. In detail, CUR possesses, among others, strong effects as an autophagy activator. The present study indicates that CUR counteracts methamphetamine (METH) toxicity. Such a drug of abuse is toxic by disturbing the autophagy machinery. We profited from an unbiased, low variable cell context by using rat pheochromocytoma PC12 cell line. In such a system, a strong protection was exerted by CUR against METH toxicity. This was associated with increased autophagy flux, merging of autophagosomes with lysosomes and replenishment of autophagy vacuoles with LC3, which instead is moved out from the vacuoles by METH. This is expected to enable the autophagy machinery. In fact, while in METH-treated cells the autophagy substrates α-synuclein accumulates in the cytosol, CUR speeds up α-synuclein clearance. Under the effects of CUR LC3 penetrate in autophagy vacuoles to commit them to cell clearance and promotes the autophagy flux. The present data provide evidence that CUR counteracts the neurotoxic effects induced by METH by promoting autophagy.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199298
Author(s):  
Guanhua Wei ◽  
Honghong Da ◽  
Kaixue Zhang ◽  
Junmin Zhang ◽  
Jianguo Fang ◽  
...  

This paper concerns the study of the roots and rhizomes of Glycyrrhiza uralensis where one new alkaloid glycoside, 3,4-dihydroxyquinoline 4- O-β-d-glucopyranoside, along with 13 known compounds (12 phenolic glycosides and one triterpene glycoside) were isolated and identified. The structure of the new compound and the known ones were identified on the basis of nuclear magnetic resonance (NMR) and mass spectrometric (MS) analysis. All the glycosides were tested for their anti-neuroinflammatory activities by inhibiting nitric oxide (NO) release in lipopolysaccharide (LPS)-induced murine microglial BV-2 cells. Several compounds were tested for their antioxidant activities in rat adrenal pheochromocytoma PC12 cells. A structure–activity relationship (SAR) analysis was carried out and revealed that the position and amount of sugar moieties have significant impact on antioxidant activities.


Neuroscience ◽  
2021 ◽  
Vol 453 ◽  
pp. 17-31
Author(s):  
Ayesha Singh ◽  
Oliver Chow ◽  
Stuart Jenkins ◽  
Lingling Zhu ◽  
Emily Rose ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 90
Author(s):  
Hironao Nakayama ◽  
Masako Nakahara ◽  
Erina Matsugi ◽  
Midori Soda ◽  
Tomoka Hattori ◽  
...  

Ferulic Acid (FA) is a highly abundant phenolic phytochemical which is present in plant tissues. FA has biological effects on physiological and pathological processes due to its anti-apoptotic and anti-oxidative properties, however, the detailed mechanism(s) of function is poorly understood. We have identified FA as a molecule that inhibits apoptosis induced by hydrogen peroxide (H2O2) or actinomycin D (ActD) in rat pheochromocytoma, PC12 cell. We also found that FA reduces H2O2-induced reactive oxygen species (ROS) production in PC12 cell, thereby acting as an anti-oxidant. Then, we analyzed FA-mediated signaling responses in rat pheochromocytoma, PC12 cells using antibody arrays for phosphokinase and apoptosis related proteins. This FA signaling pathway in PC12 cells includes inactivation of pro-apoptotic proteins, SMAC/Diablo and Bad. In addition, FA attenuates the cell injury by H2O2 through the inhibition of phosphorylation of the extracellular signal-regulated kinase (ERK). Importantly, we find that FA restores expression levels of brain-derived neurotrophic factor (BDNF), a key neuroprotective effector, in H2O2-treated PC12 cells. As a possible mechanism, FA increases BDNF by regulating microRNA-10b expression following H2O2 stimulation. Taken together, FA has broad biological effects as a neuroprotective modulator to regulate the expression of phosphokinases, apoptosis-related proteins and microRNAs against oxidative stress in PC12 cells.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6034
Author(s):  
Wen-bing Ding ◽  
Rui-yuan Zhao ◽  
Guan-hua Li ◽  
Bing-lei Liu ◽  
Hua-liang He ◽  
...  

Five new cyclic diarylheptanoids (platycary A–E, compounds 1–5) and three previously identified analogues (i.e., phttyearynol (compound 6), myricatomentogenin (compound 7), and juglanin D (compound 8)) were isolated from the stem bark of Platycarya strobilacea. The structures of these compounds were determined using NMR, HRESIMS, and electronic circular dichroism (ECD) data. The cytotoxicity of compounds 1–5 and their ability to inhibit nitric oxide (NO) production, as well as protect against the corticosterone-induced apoptosis of Pheochromocytoma (PC12) cells, were evaluated in vitro using the appropriate bioassays. Compounds 1 and 2 significantly inhibited the corticosterone-induced apoptosis of PC12 cells at a concentration of 20 μΜ.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 751
Author(s):  
Joyce A. Nieva ◽  
Bernd Krock ◽  
Urban Tillmann ◽  
Jan Tebben ◽  
Christian Zurhelle ◽  
...  

Gymnodimines and spirolides are cyclic imine phycotoxins and known antagonists of nicotinic acetylcholine receptors (nAChRs). We investigated the effect of gymnodimine A (GYM A) and 13-desmethyl spirolide C (SPX 1) from Alexandrium ostenfeldii on rat pheochromocytoma (PC12) cells by monitoring intracellular calcium levels ([Ca]i). Using whole cells, the presence of 0.5 µM of GYM A or SPX 1 induced an increase in [Ca]i mediated by acetylcholine receptors (AChRs) and inhibited further activation of AChRs by acetylcholine (ACh). To differentiate the effects of GYM A or SPX 1, the toxins were applied to cells with pharmacologically isolated nAChRs and muscarinic AChRs (mAChRs) as mediated by the addition of atropine and tubocurarine, respectively. GYM A and SPX 1 activated nAChRs and inhibited the further activation of nAChRs by ACh, indicating that both toxins mimicked the activity of ACh. Regarding mAChRs, a differential response was observed between the two toxins. Only GYM A activated mAChRs, resulting in elevated [Ca]i, but both toxins prevented a subsequent activation by ACh. The absence of the triketal ring system in GYM A may provide the basis for a selective activation of mAChRs. GYM A and SPX 1 induced no changes in [Ca]i when nAChRs and mAChRs were inhibited simultaneously, indicating that both toxins target AChRs.


Sign in / Sign up

Export Citation Format

Share Document