biomass fractionation
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 43)

H-INDEX

22
(FIVE YEARS 9)

2021 ◽  
Vol 9 ◽  
Author(s):  
Brita Asikanius ◽  
Anna-Stiina Jääskeläinen ◽  
Hanna Koivula ◽  
Petri Oinonen ◽  
Monika Österberg

Valorization of side streams offers novel types of raw materials to complement or replace synthetic and food-based alternatives in materials science, increasing profitability and decreasing the environmental impacts of biorefineries. Lignocellulose biomass contains lignin and carbohydrates that are covalently linked into lignin-carbohydrate complexes (LCCs). In biomass fractionation processes, these complexes are conventionally considered as waste, which hinders the biomass fractionation process, and they may solubilize into aqueous effluents. This study presents how LCCs, derived from pulp mill effluent, can be turned into valuable biopolymers for industrial polymer film applications. Free-standing composite films containing hydroxyethyl cellulose (HEC) and LCCs with varying molar mass, charge density and lignin/hemicellulose ratio were prepared to study the effect of LCC amount on mechanical properties and oxygen permeability. Increasing the LCC content increased the yield point and Young’s modulus of the films. Breaking strain measurements revealed a non-linear correlation with the LCC concentration for the samples with higher lignin than hemicellulose content. The addition of LCC enhanced oxygen barrier properties of HEC films significantly even at high relative humidity. The present research demonstrates how a currently underutilized fraction of the biorefinery side stream has the potential to be valorized as a biopolymer in industrial applications, for example as a barrier film for paper and board packaging.


2021 ◽  
Vol 3 ◽  
Author(s):  
Kwang Ho Kim ◽  
Chang Geun Yoo

The increased demands on renewable and sustainable products require enhancing the current conversion efficiency and expanding the utilization of biomass from a single component (i.e., cellulose) to entire biomass components in the biorefinery concept. Pretreatment solvent plays a critical role in various biorefinery processes. Recent pretreatment solvents such as organic co-solvents, acid hydrotropes, ionic liquids and deep eutectic solvents showed effective biomass fractionation as well as preservation of high-quality cellulose and lignin under mild conditions. Despite these significant enhancements in biomass pretreatment solvent, there are still many challenges, such as feedstock variety, valorization of non-cellulose components, and eco-friendliness of the applied catalyst and solvent. These technical, economic and environmental obstacles should be considered in future biomass pretreatment solvents. In particular, the development of feedstock-agnostic solvent with high fractionation performance for high quality and quantity of all three major components (i.e., cellulose, hemicellulose, and lignin) together would be an ideal direction.


2021 ◽  
pp. 64-78
Author(s):  
André M. da Costa Lopes

The use of renewable resources as feedstocks to ensure the production of goods and commodities for society has been explored in the last decades to switch off the overexploited and pollutant fossil-based economy. Today there is a strong movement to set bioeconomy as priority, but there are still challenges and technical limitations that must be overcome in the first place, particularly on biomass fractionation. For biomass to be an appellative raw material, an efficient and sustainable separation of its major components must be achieved. On the other hand, the technology development for biomass valorisation must follow green chemistry practices towards eco-friendly processes, otherwise no environmental leverage over traditional petrochemical technologies will be acquired. In this context, the application of green solvents, such as ionic liquids (ILs) and deep eutectic solvents (DES), in biomass fractionation is envisaged as promising technology that encompasses not only efficiency and environmental benefits, but also selectivity, which is a crucial demand to undertake cascade processes at biorefinery level. In particular, this article briefly discusses the disruptive achievements upon the application of ILs and DES in biomass delignification step towards an effective and selective separation of lignin from polysaccharides. The different physicochemical properties of these solvents, their interactions with lignin and their delignification capacity will be scrutinized, while some highlights will be given to the important characteristics of isolated lignin fractions for further valorisation. The advantages and disadvantages between ILs and DES in biomass delignification will be contrasted as well along the article.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongzhuang Liu ◽  
Noemi Deak ◽  
Zhiwen Wang ◽  
Haipeng Yu ◽  
Lisanne Hameleers ◽  
...  

AbstractStabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired ‘stabilization’ function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents. The obtained ethylene-glycol protected lignin displays high β-O-4 content (up to 53 per 100 aromatic units) and can be readily depolymerized to distinct monophenolic products. The cellulose residues, free from condensed lignin particles, deliver up to 95.9 ± 2.12% glucose yield upon enzymatic digestion. The DES can be recovered with high yield and purity and re-used with good efficiency. Notably, we have shown that the reactivity of the β-O-4 linkage in model compounds can be steered towards either cleavage or stabilization, depending on DES composition, demonstrating the advantage of the modular DES composition.


Author(s):  
Niamh Ryan ◽  
Polina Yaseneva

Woody biomass could potentially become a viable raw material for the future sustainable chemical industry. For this, a suitable regulatory framework must exist, that would create favourable economic conditions for wood biorefineries. Such policies must be developed on the basis of scientific evidence—in this case, data supporting the environmental advantages of the bio-based feedstocks to the chemical industry. The most suitable methodology for comprehensive evaluation of environmental performance of technologies is life cycle assessment (LCA). In this review, the available LCA studies of woody biomass fractionation and conversion to bulk chemical feedstocks are critically evaluated. It has been revealed that the majority of the openly available studies do not contain transparent inventory data and, therefore, cannot be verified or re-used; studies containing inventory data are reported in this review. The lack of inventory data also prevents comparison between studies of the same processes performed with different evaluation methods or using different system boundaries. Recommendations are proposed on how to overcome issues of commercial data sensitivity by using black-box modelling when reporting environmental information. From several comparable LCA studies, it has been concluded that today the most environmentally favourable technology for wood biomass fractionation is organosolv. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)’.


2021 ◽  
Vol 9 ◽  
Author(s):  
Douwe Sjirk Zijlstra ◽  
Joren de Korte ◽  
Ernst P. C. de Vries ◽  
Lisanne Hameleers ◽  
Erwin Wilbers ◽  
...  

Innovative biomass fractionation is of major importance for economically competitive biorefineries. Lignin is currently severely underutilized due to the use of high severity fractionation methodologies that yield complex condensed lignin that limits high-value applicability. Mild lignin fractionation conditions can lead to lignin with a more regular C-O bonded structure that has increased potential for higher value applications. Nevertheless, such extraction methodologies typically suffer from inadequate lignin extraction efficiencies and yield. (Semi)-continuous flow extractions are a promising method to achieve improved extraction efficiency of such C-O linked lignin. Here we show that optimized organosolv extraction in a flow-through setup resulted in 93–96% delignification of 40 g walnut shells (40 wt% lignin content) by applying mild organosolv extraction conditions with a 2 g/min flowrate of a 9:1 n-butanol/water mixture with 0.18 M H2SO4 at 120°C in 2.5 h. 85 wt% of the lignin (corrected for alcohol incorporation, moisture content and carbohydrate impurities) was isolated as a powder with a high retention of the β-aryl ether (β-O-4) content of 63 linking motifs per 100 C9 units. Close examination of the isolated lignin showed that the main carbohydrate contamination in the recovered lignin was butyl-xyloside and other butoxylate carbohydrates. The work-up and purification procedure were investigated and improved by the implementation of a caustic soda treatment step and phase separation with a continuous integrated mixer/separator (CINC). This led to a combined 75 wt% yield of the lignin in 3 separate fractions with 3% carbohydrate impurities and a very high β-O-4 content of 67 linking motifs per 100 C9 units. Analysis of all the mass flows showed that 98% of the carbohydrate content was removed with the inline purification step, which is a significant improvement to the 88% carbohydrate removal for the traditional lignin precipitation work-up procedure. Overall we show a convenient method for inline extraction and purification to obtain high β-O-4 butanosolv lignin in excellent yields.


2021 ◽  
pp. 145-169
Author(s):  
Mahdi Irani ◽  
Alireza Rafati ◽  
Seyedeh‐Sara Hashemi ◽  
Francisco J. Barba ◽  
Mohamed Koubaa ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 1118-1127
Author(s):  
Zhaoyang Yuan ◽  
Grace E. Klinger ◽  
Saeid Nikafshar ◽  
Yanbin Cui ◽  
Zhen Fang ◽  
...  

Author(s):  
Sampath Gunukula ◽  
Thomas J. Schwartz ◽  
Hemant P. Pendse ◽  
William J. DeSisto ◽  
M. Clayton Wheeler

Biomass fractionation technologies are down-selected and economic feasibility of the selected technologies are assessed to produce cellulose and hemicelluloses for chemical catalytic upgrading.


Sign in / Sign up

Export Citation Format

Share Document