fitness consequences
Recently Published Documents


TOTAL DOCUMENTS

704
(FIVE YEARS 174)

H-INDEX

67
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Sarah Ruth Marzec ◽  
Katharine Pelletier ◽  
Amy Hui-Pin Chang ◽  
Ian Dworkin

Over 65 years ago, Waddington demonstrated ancestrally phenotypically plastic traits can evolve to become constitutive, a process he termed genetic assimilation. Genetic assimilation evolves rapidly, assumed to be in large part due to segregating genetic variation only expressed in rare/novel environments, but otherwise phenotypically cryptic. Despite previous work suggesting a substantial role of cryptic genetic variation contributing to the evolution of genetic assimilation, some have argued for a prominent role for new mutations of large effect concurrent with selection. Interestingly, Waddington was less concerned by the relative contribution of CGV or new variants, but aimed to test the role of canalization, an evolved form of robustness. While canalization has been extensively studied, its role in the evolution of genetic assimilation is disputed, in part because explicit tests of evolved robustness are lacking. To address these questions, we recreated Waddington's selection experiments on an environmentally sensitive change in Drosophila wing morphology (crossvein development), using many independently evolved replicate lineages. Using these, we show that 1) a polygenic CGV, but not new variants of large effect are largely responsible for the evolved response demonstrated using both genomic and genetic approaches. 2) Using both environmental manipulations and mutagenesis of the evolved lineages that there is no evidence for evolved changes in canalization contributing to genetic assimilation. Finally, we demonstrate that 3) CGV has potentially pleiotropic and fitness consequences in natural populations and may not be entirely cryptic.


2022 ◽  
Author(s):  
Michael Le Pepke ◽  
Thomas Kvalnes ◽  
Bernt Rønning ◽  
Henrik Jensen ◽  
Winnie Boner ◽  
...  

2021 ◽  
Author(s):  
Christopher R. Anthony ◽  
Lee J. Foster ◽  
Christian A. Hagen ◽  
Katie M. Dugger

Author(s):  
Aneta Arct ◽  
Rafał Martyka ◽  
Szymon M. Drobniak ◽  
Wioleta Oleś ◽  
Anna Dubiec ◽  
...  

AbstractAmbient temperature experienced by an animal during development or subsequently as an adult can affect many aspects of its behaviour and life-history traits. In birds, egg incubation is a vital component of reproduction and parental care. Several studies have suggested that environmental factors (such as nest microclimate) can influence the ability of incubating parents to maintain suitable conditions for embryo development. Here, we manipulated the developmental conditions of embryos through a modification of nest box thermal microclimate to investigate female incubation behaviour and its impact on offspring fitness-related traits in a wild population of the Collared Flycatcher (Ficedula albicollis). The temperature in experimental nests was increased using a heat-pack placed under the roof of a nest box, resulting in an average temperature increase of 2.5 ºC, which corresponds to projected climate change scenarios. We demonstrated that females from nests with elevated temperature spent less time in the nest box during egg incubation and had more off-bouts than females from control nests. Moreover, we found that offspring from the experimentally heated nests had larger body mass at fledging in comparison to the control ones. Our study indicates that nest microclimate during the incubation period affects female incubation behaviour and offspring quality, indicating that environmental variation in nest temperature early in ontogeny can have important and long-lasting fitness consequences.


2021 ◽  
Vol 288 (1964) ◽  
Author(s):  
Amy Morris-Drake ◽  
Jennifer F. Linden ◽  
Julie M. Kern ◽  
Andrew N. Radford

Conflict between rival groups is rife in nature. While recent work has begun exploring the behavioural consequences of this intergroup conflict, studies have primarily considered just the 1–2 h immediately after single interactions with rivals or their cues. Using a habituated population of wild dwarf mongooses ( Helogale parvula ), we conducted week-long manipulations to investigate longer-term impacts of intergroup conflict. Compared to a single presentation of control herbivore faeces, one rival-group faecal presentation (simulating a territorial intrusion) resulted in more within-group grooming the following day, beyond the likely period of conflict-induced stress. Repeated presentations of outsider cues led to further changes in baseline behaviour by the end of the week: compared to control weeks, mongooses spent less time foraging and foraged closer to their groupmates, even when there had been no recent simulated intrusion. Moreover, there was more baseline territorial scent-marking and a higher likelihood of group fissioning in intrusion weeks. Consequently, individuals gained less body mass at the end of weeks with repeated simulated intrusions. Our experimental findings provide evidence for longer-term, extended and cumulative, effects of an elevated intergroup threat, which may lead to fitness consequences and underpin this powerful selective pressure.


2021 ◽  
Author(s):  
Sydney Kreutzmann ◽  
Elizabeth Pompa ◽  
Nhan Ngyuen ◽  
Liya Tilahun ◽  
Matthew Rutter ◽  
...  

Abstract Understanding the mechanisms by which mutations affect fitness and the distribution of mutational effects are central goals in evolutionary biology. Mutation accumulation (MA) lines have long been an important tool for understanding the effect of new mutations on fitness, phenotypic variation, and mutational parameters. However, there is a clear gap in predicting the effect of specific new mutations to their effects on fitness. Here, we complete gene ontology analysis and metabolomics experiments on Arabidopsis thaliana MA lines to determine how spontaneous mutations directly affect global metabolic output in lines that have measured fitness consequences. For these analyses, we compared three lines with relative fitness consistently higher than the unmutated progenitor and three lines with lower relative fitness as measured in four different field trials. In a gene ontology analysis, we find that the high fitness lines were significantly enriched in mutations in or near genes with transcription regulator activity. We also find that although they do not have an average difference in the number of mutations, low fitness lines have significantly more metabolic subpathways disrupted than high fitness lines. Taken together, these results suggest that the effect of a new mutation on fitness depends less on the specific metabolic pathways disrupted and more on the pleiotropic effects of those mutations, and that organisms can explore a considerable amount of physiological space with only a few mutations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Veronika Bókony ◽  
Nikolett Ujhegyi ◽  
Zsanett Mikó ◽  
Réka Erös ◽  
Attila Hettyey ◽  
...  

Sex reversal is a mismatch between genetic sex (sex chromosomes) and phenotypic sex (reproductive organs and secondary sexual traits). It can be induced in various ectothermic vertebrates by environmental perturbations, such as extreme temperatures or chemical pollution, experienced during embryonic or larval development. Theoretical studies and recent empirical evidence suggest that sex reversal may be widespread in nature and may impact individual fitness and population dynamics. So far, however, little is known about the performance of sex-reversed individuals in fitness-related traits compared to conspecifics whose phenotypic sex is concordant with their genetic sex. Using a novel molecular marker set for diagnosing genetic sex in agile frogs (Rana dalmatina), we investigated fitness-related traits in larvae and juveniles that underwent spontaneous female-to-male sex reversal in the laboratory. We found only a few differences in early life growth, development, and larval behavior between sex-reversed and sex-concordant individuals, and altogether these differences did not clearly support either higher or lower fitness prospects for sex-reversed individuals. Putting these results together with earlier findings suggesting that sex reversal triggered by heat stress may be associated with low fitness in agile frogs, we propose the hypothesis that the fitness consequences of sex reversal may depend on its etiology.


2021 ◽  
Author(s):  
Pablo Capilla-Lasheras ◽  
Alastair J Wilson ◽  
Andrew J Young

In many cooperative societies, including our own, helpers assist with the post-natal care of breeders' young, and may thereby benefit the post-natal development of offspring. Here we present evidence of a novel mechanism by which such post-natal helping could also have hitherto unexplored beneficial effects on pre-natal development: by lightening post-natal maternal workloads, helpers may allow mothers to increase their pre-natal investment per offspring. We present the findings of a decade-long study of cooperatively breeding white-browed sparrow weaver, Plocepasser mahali, societies. Within each social group, reproduction is monopolized by a dominant breeding pair, and non-breeding helpers assist with nestling feeding. Using a within-mother reaction norm approach to formally identify maternal plasticity, we demonstrate that when mothers have more female helpers they decrease their own post-natal investment per offspring (feed their nestlings at lower rates) but increase their pre-natal investment per offspring (lay larger eggs, which yield heavier hatchlings). That these plastic maternal responses are predicted by female helper number, and not male helper number, implicates the availability of post-natal helping per se as the likely driver (rather than correlated effects of group size), because female helpers feed nestlings at substantially higher rates than males. We term this novel maternal strategy 'maternal front-loading' and hypothesize that the expected availability of post-natal help allows helped mothers to focus maternal investment on the pre-natal phase, to which helpers cannot contribute directly. Such cryptic maternally mediated helper effects on pre-natal development may markedly complicate attempts to identify and quantify the fitness consequences of helping.


2021 ◽  
Author(s):  
Claire Burny ◽  
Viola Nolte ◽  
Marlies Dolezal ◽  
Christian Schl&oumltterer

Experimental evolution combined with whole-genome sequencing is a powerful approach to study the adaptive architecture of selected traits, in particular when replicated experimental populations evolving in opposite selective conditions (e.g. hot vs. cold temperature) are compared. Nevertheless, such comparisons could be affected by environmental effects shared between selective regimes (e.g. laboratory adaptation), which complicate the interpretation of selection signatures. Here, we used an experimental design, which takes advantage of the simplicity of selection signatures from founder populations with reduced variation, to study the fitness consequences of the laboratory environment (culture conditions) at two temperature regimes. After 20 generations of adaptation at 18°C and 29°C, strong genome-wide selection signatures were observed. About one third of the selection signatures can be either attributed to temperature effects, laboratory adaptation or the joint effects of both. The fitness consequences reflecting the combined effects of temperature and laboratory adaptation were more extreme in the hot environment for 83% of the affected genomic regions, fitting the pattern of larger expression differences between founders at 29°C. We propose that evolve and resequence (E&R) with reduced genetic variation allows to study genome-wide fitness consequences driven by the interaction of multiple environmental factors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hilal Erdogan ◽  
Karin Cruzado-Gutierrez ◽  
Glen Stevens ◽  
David Shapiro-Ilan ◽  
Fatma Kaplan ◽  
...  

Aggregated movement and population structure are known in entomopathogenic nematodes, which are obligate insect parasites. Aggregation behavior in the absence of external stimuli suggests communication among individuals, often in the form of trail-following, which has not been shown by nematodes of any kind. Interactions among individuals are an essential basis of following behaviors and can have significant fitness consequences. We explored intraspecific and interspecific interactions among three Steinernema species (S. glaseri, S. carpocapsae, and S. feltiae) in terms of trail following, and fitness outcomes of following heterospecific individuals. We found that the following behavior is context dependent. Following behavior among conspecifics was significantly increased when the lead nematode had prior contact with host cuticle. However, we did not find a clear association between the following response to heterospecific IJs and their reproductive success in a co-infected host.


Sign in / Sign up

Export Citation Format

Share Document