audiogenic seizures
Recently Published Documents


TOTAL DOCUMENTS

467
(FIVE YEARS 30)

H-INDEX

45
(FIVE YEARS 4)

2022 ◽  
Vol 5 (1) ◽  
pp. 01-08
Author(s):  
Gian Maria Pacifici

Levetiracetam inhibits focal and secondary generalized tonic-clonic seizures. The mechanism of levetiracetam action is not fully understood, however the correlation between binding affinity of levetiracetam and its analogues and their potency toward audiogenic seizures suggest that the synaptic vesicle glycoprotein 2A mediates the anticonvulsant effects of levetiracetam. The neural function of the synaptic vesicle 2A protein is not fully understood, but binding of levetiracetam to synaptic vesicle glycoprotein 2A might affect neuronal excitability by modifying the release of glutamate GABA through an action on vesicular function. Synaptic vesicle glycoprotein 2A may plain a role in vesicle recycling following exocytosis of neurotransmitter. In addition, levetiracetam inhibits N-type Ca2+ channels and Ca2+ release from intracellular stores. Levetiracetam may be administered intravenously or orally to infants and children and in children the levetiracetam dose varies according to the child age and body-weight. Levetiracetam is almost completed absorbed after oral administration and levetiracetam is found efficacy and safe in infants and children but it may induce adverse-effects. The levetiracetam elimination half-life is about 6 hours in infants and children, and in children the renal clearance is similar to the non-renal clearance. The prophylaxis, treatment, and trials with levetiracetam have been extensively studied in infants and children. Levetiracetam freely crosses the human placenta and freely migrates into the breast-milk. The aim of this study is to review the levetiracetam dosing, efficacy, safety, adverse-effects, pharmacokinetics, prophylaxis, treatment, and trials and transfer of levetiracetam across the human placenta and levetiracetam migration into the breast-milk.


2021 ◽  
Author(s):  
Maya Xia ◽  
Benjamin Owen ◽  
Jeremy Chiang ◽  
Alyssa Levitt ◽  
Wen Wei Yan ◽  
...  

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic and hypoxic ventilatory response. This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of seizure-induced respiratory arrest, potentially through its outputs to brainstem respiratory regions.


2021 ◽  
Vol 125 ◽  
pp. 108445
Author(s):  
Alexey A. Kulikov ◽  
Alexandra A. Naumova ◽  
Ekaterina P. Aleksandrova ◽  
Margarita V. Glazova ◽  
Elena V. Chernigovskaya

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1641
Author(s):  
Irina B. Fedotova ◽  
Natalia M. Surina ◽  
Georgy M. Nikolaev ◽  
Alexandre V. Revishchin ◽  
Inga I. Poletaeva

The review presents data which provides evidence for the internal relationship between the stages of rodent audiogenic seizures and post-ictal catalepsy with the general pattern of animal reaction to the dangerous stimuli and/or situation. The wild run stage of audiogenic seizure fit could be regarded as an intense panic reaction, and this view found support in numerous experimental data. The phenomenon of audiogenic epilepsy probably attracted the attention of physiologists as rodents are extremely sensitive to dangerous sound stimuli. The seizure proneness in this group shares common physiological characteristics and depends on animal genotype. This concept could be the new platform for the study of epileptogenesis mechanisms.


2021 ◽  
pp. 136123
Author(s):  
Rodrigo Ribeiro dos Santos ◽  
Túlio C Bernardino ◽  
Maria Carolina Machado da Silva ◽  
Antônio C.P. de Oliveira ◽  
Luciana E. Drumond ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Samara Damasceno ◽  
Pablo Augusto de Souza Fonseca ◽  
Izinara Cruz Rosse ◽  
Márcio Flávio Dutra Moraes ◽  
José Antônio Cortes de Oliveira ◽  
...  

Wistar Audiogenic Rat is an epilepsy model whose animals are predisposed to develop seizures induced by acoustic stimulation. This model was developed by selective reproduction and presents a consistent genetic profile due to the several generations of inbreeding. In this study, we performed an analysis of WAR RNA-Seq data, aiming identified at genetic variants that may be involved in the epileptic phenotype. Seventeen thousand eighty-five predicted variants were identified as unique to the WAR model, of which 15,915 variants are SNPs and 1,170 INDELs. We filter the predicted variants by pre-established criteria and selected five for validation by Sanger sequencing. The genetic variant c.14198T>C in the Vlgr1 gene was confirmed in the WAR model. Vlgr1 encodes an adhesion receptor that is involved in the myelination process, in the development of stereocilia of the inner ear, and was already associated with the audiogenic seizures presented by the mice Frings. The transcriptional quantification of Vlgr1 revealed the downregulation this gene in the corpus quadrigeminum of WAR, and the protein modeling predicted that the mutated residue alters the structure of a domain of the VLGR1 receptor. We believe that Vlgr1 gene may be related to the predisposition of WAR to seizures and suggest the mutation Vlgr1/Q4695R as putative causal variant, and the first molecular marker of the WAR strain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tori L. Schaefer ◽  
Amy A. Ashworth ◽  
Durgesh Tiwari ◽  
Madison P. Tomasek ◽  
Emma V. Parkins ◽  
...  

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability. FXS is caused by functional loss of the Fragile X Protein (FXP), also known as Fragile X Mental Retardation Protein (FMRP). In humans and animal models, loss of FXP leads to sensory hypersensitivity, increased susceptibility to seizures and cortical hyperactivity. Several components of the GABAergic system, the major inhibitory system in the brain, are dysregulated in FXS, and thus modulation of GABAergic transmission was suggested and tested as a treatment strategy. However, so far, clinical trials using broad spectrum GABAA or GABAB receptor-specific agonists have not yielded broad improvement of FXS phenotypes in humans. Here, we tested a more selective strategy in Fmr1 knockout (KO) mice using the experimental drug BAER-101, which is a selective GABAA α2/α3 agonist. Our results suggest that BAER-101 reduces hyperexcitability of cortical circuits, partially corrects increased frequency-specific baseline cortical EEG power, reduces susceptibility to audiogenic seizures and improves novel object memory. Other Fmr1 KO-specific phenotypes were not improved by the drug, such as increased hippocampal dendritic spine density, open field activity and marble burying. Overall, this work shows that BAER-101 improves select phenotypes in Fmr1 KO mice and encourages further studies into the efficacy of GABAA-receptor subunit-selective agonists for the treatment of FXS.


2021 ◽  
Vol 15 ◽  
Author(s):  
Eric R. Wengert ◽  
Ian C. Wenker ◽  
Elizabeth L. Wagner ◽  
Pravin K. Wagley ◽  
Ronald P. Gaykema ◽  
...  

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death amongst patients whose seizures are not adequately controlled by current therapies. Patients with SCN8A encephalopathy have an elevated risk for SUDEP. While transgenic mouse models have provided insight into the molecular mechanisms of SCN8A encephalopathy etiology, our understanding of seizure-induced death has been hampered by the inability to reliably trigger both seizures and seizure-induced death in these mice. Here, we demonstrate that mice harboring an Scn8a allele with the patient-derived mutation N1768D (D/+) are susceptible to audiogenic seizures and seizure-induced death. In adult D/+ mice, audiogenic seizures are non-fatal and have nearly identical behavioral, electrographical, and cardiorespiratory characteristics as spontaneous seizures. In contrast, at postnatal days 20–21, D/+ mice exhibit the same seizure behavior, but have a significantly higher incidence of seizure-induced death following an audiogenic seizure. Seizure-induced death was prevented by either stimulating breathing via mechanical ventilation or by acute activation of adrenergic receptors. Conversely, in adult D/+ mice inhibition of adrenergic receptors converted normally non-fatal audiogenic seizures into fatal seizures. Taken together, our studies show that in our novel audiogenic seizure-induced death model adrenergic receptor activation is necessary and sufficient for recovery of breathing and prevention of seizure-induced death.


2021 ◽  
Vol 15 ◽  
Author(s):  
Willian Lazarini-Lopes ◽  
Raquel A. Do Val-da Silva ◽  
Rui M. P. da Silva-Júnior ◽  
Alexandra O. S. Cunha ◽  
Norberto Garcia-Cairasco

Cannabinoids and Cannabis-derived compounds have been receiving especial attention in the epilepsy research scenario. Pharmacological modulation of endocannabinoid system's components, like cannabinoid type 1 receptors (CB1R) and their bindings, are associated with seizures in preclinical models. CB1R expression and functionality were altered in humans and preclinical models of seizures. Additionally, Cannabis-derived compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in a great variety of animal models. Audiogenic seizures (AS) are induced in genetically susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina, are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic stimulation induces brainstem-dependent wild running and tonic-clonic seizures. However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and cortical structures are recruited, and the initially brainstem-dependent seizures give rise to limbic seizures. The present study reviewed the effects of pharmacological modulation of the endocannabinoid system in audiogenic seizure susceptibility and expression. The effects of Cannabis-derived compounds in audiogenic seizures were also reviewed, with especial attention to CBD. CB1R activation, as well Cannabis-derived compounds, induced anticonvulsant effects against audiogenic seizures, but the effects of cannabinoids modulation and Cannabis-derived compounds still need to be verified in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived compounds should be further investigated not only in audiogenic seizures, but also in epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.


Sign in / Sign up

Export Citation Format

Share Document