armillaria gallica
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 2)

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1359
Author(s):  
Piotr Borowik ◽  
Tomasz Oszako ◽  
Tadeusz Malewski ◽  
Zuzanna Zwierzyńska ◽  
Leszek Adamowicz ◽  
...  

Ash shoot dieback has now spread throughout Europe. It is caused by an interaction between fungi that attack shoots (Hymenoscyphus fraxineus) and roots (Armillaria spp., in our case Armillaria gallica). While detection of the pathogen is relatively easy when disease symptoms are present, it is virtually impossible when the infestation is latent. Such situations occur in nurseries when seedlings become infected (the spores are carried by the wind several dozen miles). The diseases are masked by pesticides, fertilisers, and adequate irrigation to protect the plants. Root rot that develops in the soil is also difficult to detect. Currently, there is a lack of equipment that can detect root rot pathogens without digging up root systems, which risks damaging trees. For this reason, the use of an electronic nose to detect pathogens in infected tissue of ash trees grown in pots and inoculated with the above fungi was attempted. Disease symptoms were detected in all ash trees exposed to natural infection (via spores) in the forest. The electronic nose was able to detect the pathogens (compared to the control). Detection of the pathogens in seedlings will enable foresters to remove diseased trees and prevent the path from nursery to forest plantations by such selection.


Author(s):  
Shui-Zhu Lou ◽  
Jian Feng ◽  
Run Yang ◽  
Yan-Ping Li ◽  
Lu Gao ◽  
...  
Keyword(s):  

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5749
Author(s):  
Jérémie Loulier ◽  
François Lefort ◽  
Marcin Stocki ◽  
Monika Asztemborska ◽  
Rafał Szmigielski ◽  
...  

Fungi and oomycetes release volatiles into their environment which could be used for olfactory detection and identification of these organisms by electronic-nose (e-nose). The aim of this study was to survey volatile compound emission using an e-nose device and to identify released molecules through solid phase microextraction–gas chromatography/mass spectrometry (SPME–GC/MS) analysis to ultimately develop a detection system for fungi and fungi-like organisms. To this end, cultures of eight fungi (Armillaria gallica, Armillaria ostoyae, Fusarium avenaceum, Fusarium culmorum, Fusarium oxysporum, Fusarium poae, Rhizoctonia solani, Trichoderma asperellum) and four oomycetes (Phytophthora cactorum, P. cinnamomi, P. plurivora, P. ramorum) were tested with the e-nose system and investigated by means of SPME-GC/MS. Strains of F. poae, R. solani and T. asperellum appeared to be the most odoriferous. All investigated fungal species (except R. solani) produced sesquiterpenes in variable amounts, in contrast to the tested oomycetes strains. Other molecules such as aliphatic hydrocarbons, alcohols, aldehydes, esters and benzene derivatives were found in all samples. The results suggested that the major differences between respective VOC emission ranges of the tested species lie in sesquiterpene production, with fungi emitting some while oomycetes released none or smaller amounts of such molecules. Our e-nose system could discriminate between the odors emitted by P. ramorum, F. poae, T. asperellum and R. solani, which accounted for over 88% of the PCA variance. These preliminary results of fungal and oomycete detection make the e-nose device suitable for further sensor design as a potential tool for forest managers, other plant managers, as well as regulatory agencies such as quarantine services.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Brandon C. Alveshere ◽  
Shawn McMurtrey ◽  
Patrick Bennett ◽  
Mee‐Sook Kim ◽  
John W. Hanna ◽  
...  

2020 ◽  
Vol 105 (1) ◽  
pp. 211-224
Author(s):  
Benedikt Engels ◽  
Uwe Heinig ◽  
Christopher McElroy ◽  
Reinhard Meusinger ◽  
Torsten Grothe ◽  
...  

Abstract Melleolides and armillyl orsellinates are protoilludene-type aryl esters that are synthesized exclusively by parasitic fungi of the globally distributed genus Armillaria (Agaricomycetes, Physalacriaceae). Several of these compounds show potent antimicrobial and cytotoxic activities, making them promising leads for the development of new antibiotics or drugs for the treatment of cancer. We recently cloned and characterized the Armillaria gallica gene Pro1 encoding protoilludene synthase, a sesquiterpene cyclase catalyzing the pathway-committing step to all protoilludene-type aryl esters. Fungal enzymes representing secondary metabolic pathways are sometimes encoded by gene clusters, so we hypothesized that the missing steps in the pathway to melleolides and armillyl orsellinates might be identified by cloning the genes surrounding Pro1. Here we report the isolation of an A. gallica gene cluster encoding protoilludene synthase and four cytochrome P450 monooxygenases. Heterologous expression and functional analysis resulted in the identification of protoilludene-8α-hydroxylase, which catalyzes the first committed step in the armillyl orsellinate pathway. This confirms that ∆-6-protoilludene is a precursor for the synthesis of both melleolides and armillyl orsellinates, but the two pathways already branch at the level of the first oxygenation step. Our results provide insight into the synthesis of these valuable natural products and pave the way for their production by metabolic engineering. Key points • Protoilludene-type aryl esters are bioactive metabolites produced by Armillaria spp. • The pathway-committing step to these compounds is catalyzed by protoilludene synthase. • We characterized CYP-type enzymes in the cluster and identified novel intermediates.


Plant Disease ◽  
2020 ◽  
Author(s):  
John W. Hanna ◽  
Ned B. Klopfenstein ◽  
Michelle M. Cram ◽  
Rabiu O. Olatinwo ◽  
Stephen W Fraedrich ◽  
...  

Armillaria root and butt diseases, which are a global issue, can be influenced by changing environmental conditions. Armillaria gallica is a well-known pathogen of diverse trees worldwide (Brazee and Wick 2009). Besides A. gallica causing root rot of Hemerocallis sp. and Cornus sp. in South Carolina (Schnabel et al. 2005), little is reported on the distribution and host range of A. gallica in the southeastern USA. In July 2017, three Armillaria isolates were obtained from two naturally occurring hosts in Georgia, USA and cultured on malt extract medium (3% malt extract, 3% dextrose, 1% peptone, and 1.5% agar). One isolate (GA3) was obtained in Unicoi State Park near Helen, Georgia (Lat. 34.712275, Long. -83.727765, elev. 498 m) from the basal portion of Rhododendron sp. with extensive root/butt decay, but no crown symptoms were evident (Supplementary Figure 1). GA4 and GA5 (Lat. 33.902433, Long. -83.382453, elev. 215 m) were isolated from wind-felled Quercus rubra (red oak) with root disease at the State Botanical Gardens in Athens, Georgia. GA4 was associated with a large root ball (ca. 4-m diameter) (Supplementary Figure 2), and GA5 was obtained from a mature tree with infected roots, with characteristic spongy rot of Armillaria root disease. Crown symptoms could not be evaluated because the crowns had been removed before the collections. Several other oaks with Armillaria root disease were noted throughout the State Botanical Gardens. Pairing tests reduced these three isolates (whiteish mycelia with a dark, brownish crust and rhizomorphs), to two genets with GA4 = GA5. Both genets (GA3 and GA4) were identified as A. gallica using translation elongation factor 1α (tef1) sequences (Genbank Nos. MT761697 and MT761698, respectively) that showed ≥ 97% identity (≥ 98% coverage) with A. gallica sequences (KF156772, KF156775). Also, nine replications of somatic pairing tests showed 33 – 67% compatibility with A. gallica (occurs in southeastern USA), compared with 0 – 22% for A. mexicana, A. mellea (occurs in southeastern USA), A. solidipes, and Desarmillaria tabescens (occurs in southeastern USA). To our knowledge, this note represents the first report of A. gallica on Rhododendron and Q. rubra in Georgia, USA, which has experienced severe drought in recent decades (e.g., Park Williams et al. 2017) that could predispose trees to Armillaria infection (e.g., Wargo 1996). Quercus rubra was previously reported as a host of A. gallica in Arkansas (Kelley et al. 2009) and Massachusetts (Brazee and Wick 2009), USA. In Missouri, USA, A. gallica has been reported as a weak pathogen with potential biological control against A. mellea (Bruhn et al. 2000). Other reports from several regions on various hosts suggest pathogenicity of A. gallica is associated with changing climate (Nelson et al. 2013, Kim et al. 2017, Kubiak et al. 2017). Wide genetic variation and/or cryptic speciation within A. gallica may account for differences in ecological behavior (Klopfenstein et al. 2017), but this is difficult to evaluate because Armillaria pathogenicity tests cannot be used on most forest tree seedlings. This study suggests that A. gallica is more widespread than previously known and its adverse impacts on woody plants may intensify over time, depending on the environmental conditions. Further studies are needed to determine environmental influences on A. gallica, the full distribution of A. gallica, and its effects in forests of the southeastern USA.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maura G. Tyrrell ◽  
Diane C. Peabody ◽  
Robert B. Peabody ◽  
Magdalena James-Pederson ◽  
Rachel G. Hirst ◽  
...  

Abstract Although cells of mushroom-producing fungi typically contain paired haploid nuclei (n + n), most Armillaria gallica vegetative cells are uninucleate. As vegetative nuclei are produced by fusions of paired haploid nuclei, they are thought to be diploid (2n). Here we report finding haploid vegetative nuclei in A. gallica at multiple sites in southeastern Massachusetts, USA. Sequencing multiple clones of a single-copy gene isolated from single hyphal filaments revealed nuclear heterogeneity both among and within hyphae. Cytoplasmic bridges connected hyphae in field-collected and cultured samples, and we propose nuclear migration through bridges maintains this nuclear heterogeneity. Growth studies demonstrate among- and within-hypha phenotypic variation for growth in response to gallic acid, a plant-produced antifungal compound. The existence of both genetic and phenotypic variation within vegetative hyphae suggests that fungal individuals have the potential to evolve within a single generation in response to environmental variation over time and space.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1107 ◽  
Author(s):  
Justyna Anna Nowakowska ◽  
Marcin Stocki ◽  
Natalia Stocka ◽  
Sławomir Ślusarski ◽  
Miłosz Tkaczyk ◽  
...  

The purpose of this study was to better understand the interactive impact of two soil-borne pathogens, Phytophthora cactorum and Armillaria gallica, on seedlings of silver birch (Betula pendula Roth.) subjected to stress caused by mechanical defoliation, simulating primary insect feeding. This is the first experimental confirmation of silver birch seedling root damage (and in consequence shoot mortality) caused by the additive effect of defoliation stress and P. cactorum inoculation via soil. However, the most severe damage to roots occurred after A. gallica inoculation. One year after treatments, chlorophyll fluorescence measurement, and gas chromatography coupled with mass spectrometry (GC-MS) were used to analyze the photosynthetic activity in leaves, the volatile organic compounds (VOCs) emitted by the birch leaves, and chemical compounds from the roots. The cumulative effect of the two pathogens and partial defoliation reduced photosynthetic activity, suggesting dysfunction of photosystem PSII due to the applied stresses. In summary, it seems that the main differences in photosynthetic performance could be attributed to Armillaria infection. The birch leaves in seedlings exposed to 50% defoliation, and inoculation with P.cactorum and A. gallica, emitted more aromatic carbonyls and alcohols, as well as half as much aliphatic esters, compared to controls. In infected birch roots, the production of phenols, triterpenes, and fatty alcohols increased, but fatty acids decreased. Higher levels of aromatic carbonyls and alcohols in leaves, as well as phenolic compounds in the roots of stressed birches (compared to control) suggest an activation of plant systemic acquired resistance (SAR).


Author(s):  
Justyna Anna Nowakowska ◽  
Marcin Stocki ◽  
Natalia Stocka ◽  
Sławomir Ślusarski ◽  
Miłosz Tkaczyk ◽  
...  

The purpose of this study was to better understand the interactive impact of two soil-borne pathogens, Phytophthora cactorum (as the primary pathogen) and Armillaria gallica (as secondary), on two-year-old seedlings of silver birch (Betula pendula) subjected to stress caused by mechanical defoliation simulating primary insect feeding. One year after treatments, the chlorophyll fluorescence measurement and gas chromatography coupled with mass spectrometry (GC-MS) were used to analyze the photosynthetic activity in leaves, the volatile organic compounds (VOCs) emitted by birch leaves and chemical compounds from roots. Only the infection of roots by P. cactorum increased photosynthetic rates in the leaves, which may suggest its cryptic development in contrast to fungi. The birch leaves in seedlings exposed to 50% defoliation, inoculation with P. cactorum and A. gallica emitted more aromatic carbonyls and alcohols, as well as half as much aliphatic esters, compared to untreated controls. In infected birch roots, the production of phenols, triterpenes and fatty alcohols increased, but fatty acids decreased. This was the first experimental confirmation of the pathogenicity of P. cactorum on silver birch seedlings in Poland. The most severe damage to roots took place only in the case of two-way or three-way interactions. Higher levels of aromatic carbonyls and alcohols in leaves, as well as phenolic compounds in roots of stressed birches (compared to control) suggest an activation of plant systemic acquired resistance (SAR).


Sign in / Sign up

Export Citation Format

Share Document