linear independence constraint qualification
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
pp. 135
Author(s):  
Canghua Jiang ◽  
Dongming Zhang ◽  
Chi Yuan ◽  
Kok Ley Teo

<p style='text-indent:20px;'>This paper proposes an active set solver for <inline-formula><tex-math id="M2">\begin{document}$ H_\infty $\end{document}</tex-math></inline-formula> min-max optimal control problems involving linear discrete-time systems with linearly constrained states, controls and additive disturbances. The proposed solver combines Riccati recursion with dynamic programming. To deal with possible degeneracy (i.e. violations of the linear independence constraint qualification), constraint transformations are introduced that allow the surplus equality constraints on the state at each stage to be moved to the previous stage together with their Lagrange multipliers. In this way, degeneracy for a feasible active set can be determined by checking whether there exists an equality constraint on the initial state over the prediction horizon. For situations when the active set is degenerate and all active constraints indexed by it are non-redundant, a vertex exploration strategy is developed to seek a non-degenerate active set. If the sampled state resides in a robust control invariant set and certain second-order sufficient conditions are satisfied at each stage, then a bounded <inline-formula><tex-math id="M3">\begin{document}$ l_2 $\end{document}</tex-math></inline-formula> gain from the disturbance to controlled output can be guaranteed for the closed-loop system under some standard assumptions. Theoretical analysis and numerical simulations show that the computational complexity per iteration of the proposed solver depends linearly on the prediction horizon.</p>


Author(s):  
Harald Günzel ◽  
Daniel Hernández Escobar ◽  
Jan-J. Rückmann

AbstractIn this paper we study the class of mathematical programs with complementarity constraints MPCC. Under the Linear Independence constraint qualification MPCC-LICQ we state a topological as well as an equivalent algebraic characterization for the strong stability (in the sense of Kojima) of an M-stationary point for MPCC. By allowing perturbations of the describing functions up to second order, the concept of strong stability refers here to the local existence and uniqueness of an M-stationary point for any sufficiently small perturbed problem where this unique solution depends continuously on the perturbation. Finally, some relations to S- and C-stationarity are briefly discussed.


Author(s):  
Vladimir Shikhman

AbstractWe study mathematical programs with switching constraints (for short, MPSC) from the topological perspective. Two basic theorems from Morse theory are proved. Outside the W-stationary point set, continuous deformation of lower level sets can be performed. However, when passing a W-stationary level, the topology of the lower level set changes via the attachment of a w-dimensional cell. The dimension w equals the W-index of the nondegenerate W-stationary point. The W-index depends on both the number of negative eigenvalues of the restricted Lagrangian’s Hessian and the number of bi-active switching constraints. As a consequence, we show the mountain pass theorem for MPSC. Additionally, we address the question if the assumption on the nondegeneracy of W-stationary points is too restrictive in the context of MPSC. It turns out that all W-stationary points are generically nondegenerate. Besides, we examine the gap between nondegeneracy and strong stability of W-stationary points. A complete characterization of strong stability for W-stationary points by means of first and second order information of the MPSC defining functions under linear independence constraint qualification is provided. In particular, no bi-active Lagrange multipliers of a strongly stable W-stationary point can vanish.


2014 ◽  
Vol 26 (5) ◽  
pp. 566-572 ◽  
Author(s):  
Ailan Liu ◽  
◽  
Dingguo Pu ◽  
◽  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/04.jpg"" width=""300"" />Algorithm flow chart</div> We propose a nonmonotone QP-free infeasible method for inequality-constrained nonlinear optimization problems based on a 3-1 piecewise linear NCP function. This nonmonotone QP-free infeasible method is iterative and is based on nonsmooth reformulation of KKT first-order optimality conditions. It does not use a penalty function or a filter in nonmonotone line searches. This algorithm solves only two systems of linear equations with the same nonsingular coefficient matrix, and is implementable and globally convergent without a linear independence constraint qualification or a strict complementarity condition. Preliminary numerical results are presented. </span>


Sign in / Sign up

Export Citation Format

Share Document