sea surface temperature anomalies
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 74)

H-INDEX

56
(FIVE YEARS 4)

2022 ◽  
pp. 1-44

Abstract Atlantic Multidecadal Variability (AMV) impacts temperature, precipitation, and extreme events on both sides of the Atlantic basin. Previous studies with climate models have suggested that when external radiative forcing is held constant, the large-scale ocean and atmosphere circulation are associated with sea-surface temperature anomalies that have similar characteristics to the observed AMV. However, there is an active debate as to whether these internal fluctuations driven by coupled atmosphere-ocean variability remain influential to the AMV on multidecadal timescales in our modern, anthropogenically-forced climate. Here we provide evidence from multiple large ensembles of climate models, paleo reconstructions, and instrumental observations of a growing role for external forcing in the AMV. Prior to 1850, external forcing, primarily from volcanoes, explains about one third of AMV variance. Between 1850 and 1950, there is a transitional period, where external forcing explains half of AMV variance, but volcanic forcing only accounts for about 10% of that. After 1950, external forcing explains three quarters of AMV variance. That is, the role for external forcing in the AMV grows as the variations in external forcing grow, even if the forcing is from different sources. When forcing is relatively stable, as in earlier modeling studies, a higher percentage of AMV variations are internally generated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rodrigue Anicet Imbol Koungue ◽  
Peter Brandt ◽  
Joke Lübbecke ◽  
Arthur Prigent ◽  
Meike Sena Martins ◽  
...  

High interannual sea surface temperature anomalies of more than 2°C were recorded along the coasts of Angola and Namibia between October 2019 and January 2020. This extreme coastal warm event that has been classified as a Benguela Niño, reached its peak amplitude in November 2019 in the Angola Benguela front region. In contrast to classical Benguela Niños, the 2019 Benguela Niño was generated by a combination of local and remote forcing. In September 2019, a local warming was triggered by positive anomalies of near coastal wind-stress curl leading to downwelling anomalies through Ekman dynamics off Southern Angola and by anomalously weak winds reducing the latent heat loss by the ocean south of 15°S. In addition, downwelling coastal trapped waves were observed along the African coast between mid-October 2019 and early January 2020. Those coastal trapped waves might have partly emanated from the equatorial Atlantic as westerly wind anomalies were observed in the central and eastern equatorial Atlantic between end of September to early December 2019. Additional forcing for the downwelling coastal trapped waves likely resulted from an observed weakening of the prevailing coastal southerly winds along the Angolan coast north of 15°S between October 2019 and mid-February 2020. During the peak of the event, latent heat flux damped the sea surface temperature anomalies mostly in the Angola Benguela front region. In the eastern equatorial Atlantic, relaxation of cross-equatorial southerly winds might have contributed to the equatorial warming in November 2019 during the peak of the 2019 Benguela Niño. Moreover, for the first time, moored velocities off Angola (11°S) revealed a coherent poleward flow in the upper 100 m in October and November 2019 suggesting a contribution of meridional heat advection to the near-surface warming during the early stages of the Benguela Niño. During the Benguela Niño, a reduction of net primary production in the Southern Angola and Angola Benguela front regions was observed.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Francesco Ventura ◽  
José Pedro Granadeiro ◽  
Paul M. Lukacs ◽  
Amanda Kuepfer ◽  
Paulo Catry

In many socially monogamous species, divorce is a strategy used to correct for sub-optimal partnerships and is informed by measures of previous breeding performance. The environment affects the productivity and survival of populations, thus indirectly affecting divorce via changes in demographic rates. However, whether environmental fluctuations directly modulate the prevalence of divorce in a population remains poorly understood. Here, using a longitudinal dataset on the long-lived black-browed albatross ( Thalassarche melanophris ) as a model organism, we test the hypothesis that environmental variability directly affects divorce. We found that divorce rate varied across years (1% to 8%). Individuals were more likely to divorce after breeding failures. However, regardless of previous breeding performance, the probability of divorce was directly affected by the environment, increasing in years with warm sea surface temperature anomalies (SSTA). Furthermore, our state-space models show that warm SSTA increased the probability of switching mates in females in successful relationships. For the first time, to our knowledge, we document the disruptive effects of challenging environmental conditions on the breeding processes of a monogamous population, potentially mediated by higher reproductive costs, changes in phenology and physiological stress. Environmentally driven divorce may therefore represent an overlooked consequence of global change.


Author(s):  
Jessica Ann Benthuysen ◽  
Grant A. Smith ◽  
Claire M. Spillman ◽  
Craig R. Steinberg

Abstract The 2020 marine heatwave in the Great Barrier Reef and Coral Sea led to mass coral bleaching. Sea surface temperature anomalies reached +1.7°C for the whole of the Great Barrier Reef and Coral Sea and exceeded +2°C across broad regions (referenced to 1990-2012). The marine heatwave reached Category 2 (Strong) and warm anomalies peaked between mid-February and mid-March 2020. The marine heatwave’s peak intensity aligned with regions of reduced cloud cover and weak wind speeds. We used a marine heatwave framework to assess the ability of an operational coupled ocean-atmosphere prediction system (ACCESS-S1) to capture the marine heatwave’s severity, duration, and spatial extent. For initial week predictions, the predicted marine heatwave severity generally agreed with the magnitude and spatial extent of the observed severity for that week. The model ensemble mean did not capture the marine heatwave’s development phase at lead times beyond the first week. The model underestimated the marine heatwave’s spatial extent, which reached up to 95% of the study area with at least Moderate severity and up to 43% with at least Strong severity. However, most forecast ensemble members correctly predicted the period of Strong severity in the first week of the model forecast. The model correctly predicted marine heatwave conditions to persist from mid-February to mid-March but did not capture the end of the marine heatwave. The inability to predict the end of the event and other periods of less skilful prediction were related to subseasonal variability owing to weather systems, including the passage of tropical cyclones not simulated in the model. On subseasonal timescales, evaluating daily to weekly forecasts of ocean temperature extremes is an important step toward implementing methods for developing operational forecast extremes products for use in early warning systems.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
G. Di Capua ◽  
S. Sparrow ◽  
K. Kornhuber ◽  
E. Rousi ◽  
S. Osprey ◽  
...  

AbstractSummer 2010 saw two simultaneous extremes linked by an atmospheric wave train: a record-breaking heatwave in Russia and severe floods in Pakistan. Here, we study this wave event using a large ensemble climate model experiment. First, we show that the circulation in 2010 reflected a recurrent wave train connecting the heatwave and flooding events. Second, we show that the occurrence of the wave train is favored by three drivers: (1) 2010 sea surface temperature anomalies increase the probability of this wave train by a factor 2-to-4 relative to the model’s climatology, (2) early-summer soil moisture deficit in Russia not only increases the probability of local heatwaves, but also enhances rainfall extremes over Pakistan by forcing an atmospheric wave response, and (3) high-latitude land warming favors wave-train occurrence and therefore rainfall and heat extremes. These findings highlight the complexity and synergistic interactions between different drivers, reconciling some seemingly contradictory results from previous studies.


2021 ◽  
pp. 1-59
Author(s):  
Han-Ching Chen ◽  
Fei-Fei Jin ◽  
Sen Zhao ◽  
Andrew T. Wittenberg ◽  
Shaocheng Xie

AbstractThis study examines historical simulations of ENSO in the E3SM-1-0, CESM2, and GFDL-CM4 climate models, provided by three leading U.S. modeling centers as part of the Coupled Model Intercomparison Project phase 6 (CMIP6). These new models have made substantial progress in simulating ENSO’s key features, including: amplitude; timescale; spatial patterns; phase-locking; spring persistence barrier; and recharge oscillator dynamics. However, some important features of ENSO are still a challenge to simulate. In the central and eastern equatorial Pacific, the models’ weaker-than-observed subsurface zonal current anomalies and zonal temperature gradient anomalies serve to weaken the nonlinear zonal advection of subsurface temperatures, leading to insufficient warm/cold asymmetry of ENSO’s sea surface temperature anomalies (SSTA). In the western equatorial Pacific, the models’ excessive simulated zonal SST gradients amplify their zonal temperature advection, causing their SSTA to extend farther west than observed. The models underestimate both ENSO’s positive dynamic feedbacks (due to insufficient zonal wind stress responses to SSTA) and its thermodynamic damping (due to insufficient convective cloud shading of eastern Pacific SSTA during warm events); compensation between these biases leads to realistic linear growth rates for ENSO, but for somewhat unrealistic reasons. The models also exhibit stronger-than-observed feedbacks onto eastern equatorial Pacific SSTAs from thermocline depth anomalies, which accelerates the transitions between events and shortens the simulated ENSO period relative to observations. Implications for diagnosing and simulating ENSO in climate models are discussed.


Sign in / Sign up

Export Citation Format

Share Document