mass flow rates
Recently Published Documents


TOTAL DOCUMENTS

566
(FIVE YEARS 163)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
pp. 1-10
Author(s):  
Serdar Hicdurmaz ◽  
Reiner Buck ◽  
Bernhard Hoffschmidt

Abstract Particle solar receivers promise economical and operational advantages compared to the molten salt based solar receivers. In this study, an experiment is designed to observe the particle flow characteristics in the Centrifugal Solar Particle Receiver. A set of experiments for various receiver rotation speeds and particle mass flow rates is conducted, and experimentally obtained raw results are post-processed by means of an Image Processing Routine based on 4BestEstimate algorithm[1]. The axial advance of the particles in one turn, the particle film thickness and the ratio of the stationary zone to the receiver circumference are measured in order to be later used in the validation study of the Discrete Element Method based numerical model.


2022 ◽  
Vol 21 (12) ◽  
pp. 300
Author(s):  
Tian-Ci Zheng ◽  
Long Li ◽  
Le Zou ◽  
Xiang-Gao Wang

Abstract The X-ray flares have usually been ascribed to long-lasting activities of the central engine of gamma-ray bursts (GRBs), e.g., fallback accretion. The GRB X-ray plateaus, however, favor a millisecond magnetar central engine. The fallback accretion can be significantly suppressed due to the propeller effect of a magnetar. Therefore, if the propeller regime cannot resist the mass flow onto the surface of the magnetar efficiently, the X-ray flares raising upon the magnetar plateau would be expected. In this work, such peculiar cases are connected to the accretion process of the magnetars, and an implication for magnetar-disc structure is given. We investigate the repeated accretion process with multi-flare GRB 050730, and give a discussion for the accretion-induced variation of the magnetic field in GRB 111209A. Two or more flares exhibit in the GRB 050730, 060607A and 140304A; by adopting magnetar mass M = 1.4 M ⊙ and radius R = 12 km, the average mass flow rates of the corresponding surrounding disk are 3.53 × 10−4 M ⊙ s−1, 4.23 × 10−4 M ⊙ s−1, and 4.33 × 10−4 M ⊙ s−1, and the corresponding average sizes of the magnetosphere are 5.01 × 106 cm, 6.45 × 106 cm, and 1.09 × 107 cm, respectively. A statistic analysis that contains eight GRBs within 12 flares shows that the total mass loading in single flare is ∼ 2 × 10−5 M ⊙. In the lost mass of a disk, there are about 0.1% used to feed a collimated jet.


2022 ◽  
Vol 334 ◽  
pp. 03004
Author(s):  
Farhad Farajimoghadam ◽  
Matteo Testi ◽  
Luigi Crema

Fuel cell vehicles and trains (FCVs) are seen as a viable alternative to fossil fuel-powered vehicles, with the potential to help the automotive and transport industry grow sustainably. Because of their zero emissions, great efficiency, and diverse hydrogen sources, they are an ideal solution to climate change and the global energy issue. In this study, the simulation of releasing hydrogen from a moving vehicle inside a tunnel has been done. For this purpose, two scenarios have been considered. In the first one, it assumed that hydrogen propagates inside a tunnel without ignition and in the second approach, hydrogen released considered to be combusted. The effect of this combustion on the tunnel and train wall has been investigated. For this goal, two different mass flow rates of hydrogen were considered and results were compared together. Moreover, pressure contours have been shown to represent the overpressure phenomenon and it is resulted that in the area of hydrogen dispersion, there will be high pressure.


Author(s):  
S. Seralathan ◽  
N.S.V. Bhavaniprasad ◽  
J. Sai Krishna ◽  
S. Lakshmankumar ◽  
V. Hariram ◽  
...  

Wedge type diffusers are used generally in the highly loaded stages of smaller jet engines as it is compact in size. Low speed centrifugal compressor (LSCC) is selected for this present study as experimental details are available. A centrifugal compressor stage comprising wedge type diffuser is used in this numerical investigation in which studies are carried out at design mass flow rate (30kg/s) and off-design mass flow rates (23.64kg/s and 36.36kg/s) at constant rotational speed of 1920 rpm. Single passage approach is chosen to model the computational domain which is meshed with unstructured grid. Turbulence model chosen is kω-SST. The investigation revealed the jet-wake structure along the pressure side and suction side of the impeller and its subsequently mixing at impeller exit vaneless diffuser region. Diffusion process in the LSCC is observed to be effective as the outlet values of absolute velocity are lesser compared to its inlet values. Highest static pressure rise is observed for design mass flow rate and followed by below and above off-design mass flow rates.


2021 ◽  
Author(s):  
Raghuvaran D. ◽  
Satvik Shenoy ◽  
Srinivas G

Abstract Axial flow fans (AFF) are extensively used in various industrial sectors, usually with flows of low resistance and high mass flow rates. The blades, the hub and the shroud are the three major parts of an AFF. Various kinds of optimisation can be implemented to improve the performance of an AFF. The most common type is found to be geometric optimisation including variation in number of blades, modification in hub and shroud radius, change in angle of attack and blade twist, etc. After validation of simulation model and carrying out a grid independence test, parametric analysis was done on an 11-bladed AFF with a shroud of uniform radius using ANSYS Fluent. The rotational speed of the fan and the velocity at fan inlet were the primary variables of the study. The variation in outlet mass flow rate and total pressure was studied for both compressible and incompressible ambient flows. Relation of mass flow rate and total pressure with inlet velocity is observed to be linear and exponential respectively. On the other hand, mass flow rate and total pressure have nearly linear relationship with rotational speed. A comparison of several different axial flow tracks with the baseline case fills one of the research gaps.


2021 ◽  
Vol 923 (2) ◽  
pp. 220
Author(s):  
Enrico M. Di Teodoro ◽  
J. E. G. Peek

Abstract We determine radial velocities and mass flow rates in a sample of 54 local spiral galaxies by modeling high-resolution and high-sensitivity data of the atomic hydrogen emission line. We found that, although radial inflow motions seem to be slightly preferred over outflow motions, their magnitude is generally small. Most galaxies show radial flows of only a few km s−1 throughout their H i disks, either inward or outward, without any clear increase in magnitude in the outermost regions, as we would expect for continuous radial accretion. Gas mass flow rates for most galaxies are less than 1 M ⊙ yr−1. Over the entire sample, we estimated an average inflow rate of 0.3 M ⊙ yr−1 outside the optical disk and of 0.1 M ⊙ yr−1 in the outskirts of the H i disks. These inflow rates are about 5–10 times smaller than the average star formation rate of 1.4 M ⊙ yr−1. Our study suggests that there is no clear evidence for systematic radial accretion inflows that alone could feed and sustain the star formation process in the inner regions of local spiral galaxies at its current rate.


Author(s):  
M.L.R. Chaitanya Lahari ◽  
◽  
P.H.V. Sesha Talpa Sai ◽  
K.V. Sharma ◽  
K.S. Narayanaswamy ◽  
...  

The Nusselt number, overall heat transfer, and convective heat transfer coefficients of glycerol-water-based Cu nanofluids flowing in a parallel flow double pipe heat exchanger are estimated using CFD analysis. Single-phase fluid approach technique is used in the analysis. Ansys 19.0 workbench was used to create the heat exchanger model. Heat transfer tests with nanofluids at three flow rates (680<Re<1900) are carried out in a laminar developing flow zone. For testing, a 500 mm long concentric double pipe heat exchanger with tube dimensions of ID=10.2 mm, OD= 12.7 mm, and annulus dimensions of ID=17.0 mm, OD= 19.5 mm is employed. Copper is utilized for the tube and annulus material. This study employed three-particle volume concentrations of 0.2 percent, 0.6 percent, and 1.0 percent. The mass flow rates of hot water in the tube are 0.2, 0.017, and 0.0085 kg/s, while the mass flow rates of nanofluids in the annulus are 0.03, 0.0255, and 0.017 kg/s. The average temperature of nanofluids is 36°C, whereas hot water is 58°C. In comparison to base liquid, the overall heat transfer coefficient and convective HTC of 1.0 percent copper nanofluids at 0.03 kg/s are raised by 26.2 and 46.2 percent, respectively. The experimental findings are compared to CFD values, and they are in close agreement.


Sign in / Sign up

Export Citation Format

Share Document