bc aerosols
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 21 (10) ◽  
pp. 7671-7694
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath ◽  
Laurent Menut

Abstract. To reduce the uncertainty in climatic impacts induced by black carbon (BC) from global and regional aerosol–climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution, specifically over the regions where the atmosphere is loaded with a large amount of BC, e.g. the Indo-Gangetic Plain (IGP) in the Indian subcontinent. Here we examine the wintertime direct radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1∘ × 0.1∘) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was assessed by executing five simulations: Constrained and bottomup (bottomup includes Smog, Cmip, Edgar, and Pku). These simulations respectively implement the recently estimated India-based observationally constrained BC emissions (Constrainedemiss) and the latest bottom-up BC emissions (India-based: Smog-India; global: Coupled Model Intercomparison Project phase 6 – CMIP6, Emission Database for Global Atmospheric Research-V4 – EDGAR-V4, and Peking University BC Inventory – PKU). The mean BC emission flux from the five BC emission inventory databases was found to be considerably high (450–1000 kg km−2 yr−1) over most of the IGP, with this being the highest (> 2500 kg km−2 yr−1) over megacities (Kolkata and Delhi). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from the Constrained estimated BC concentration (NMB: < 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulations with Constrainedemiss BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with bottom-up emissions. The high BC pollution covering the IGP region comprised a wintertime all-day (daytime) mean BC concentration and BC-AOD respectively in the range 14–25 µg m−3 (6–8 µg m−3) and 0.04–0.08 µg m−3 from the Constrained simulation. The simulated BC concentration and BC-AOD were inferred to be primarily sensitive to the change in BC emission strength over most of the IGP (including the megacity of Kolkata), but also to the transport of BC aerosols over megacity Delhi. Five main hotspot locations were identified in and around Delhi (northern IGP), Prayagraj–Allahabad–Varanasi (central IGP), Patna–Palamu (upper, lower, and mideastern IGP), and Kolkata (eastern IGP). The wintertime direct radiative perturbation due to BC aerosols from the Constrained simulation estimated the atmospheric radiative warming (+30 to +50 W m−2) to be about 50 %–70 % larger than the surface cooling. A widespread enhancement in atmospheric radiative warming due to BC by 2–3 times and a reduction in surface cooling by 10 %–20 %, with net warming at the top of the atmosphere (TOA) of 10–15 W m−2, were noticed compared to the atmosphere without BC, for which a net cooling at the TOA was exhibited. These perturbations were the strongest around megacities (Kolkata and Delhi), extended to the eastern coast, and were inferred to be 30 %–50% lower from the bottomup than the Constrained simulation.


2020 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Ranjitkumar Solanki ◽  
Kamlesh N. Pathak

Black Carbon (BC) aerosols mass concentration was studied at Surat, Gujarat (India), a coastal region near the Tapi River at the Gulf of Khambhat. Using satellite data for solar extinction due to Black Carbon (BC) mass concentration, data were collected from the Giovanni platform developed by NASA. Results of the data for the 5-year period (January to December 2001–2005) are discussed here. Annual and Seasonal variations of Black Carbon (BC) in relation to changes in the regional meteorological conditions are discussed here. The data collected during January to December 2001–2005 indicated the annual average BC concentration. The mean annual variations of BC aerosols mass concentration saw its maximum in the month of December while minimum was seen in the month of July. The seasonal mean BC mass concentration observed to be at its lowest in monsoon season while its highest was in winter at the study region. Variation of the BC trend observed was higher in the month December and lower in the month of July which is mostly related to the changes in the local boundary layer.


2020 ◽  
Vol 20 (16) ◽  
pp. 9701-9711 ◽  
Author(s):  
Xiaolin Zhang ◽  
Mao Mao ◽  
Yan Yin ◽  
Shihao Tang

Abstract. The aerosol absorption Ångstrom exponent (AAE) is a crucial optical parameter for apportionment and characterization. Due to considerable inconsistences associated with observations, numerical research is a powerful means to give a better understanding of the AAE of aged black carbon (BC) aerosols. Numerical studies of the AAE of polydisperse BC aggregates with brown coatings using the exact multiple-sphere T-matrix method (MSTM) are performed. The objective of the study is to thoroughly assess the AAE of coated BC influenced by their observation-based detailed microphysics and then provide a new AAE parameterization for application. At odds with our expectations, more large-sized BC particles coated by thin brown carbon can have an AAE smaller than 1.0, indicating that BC aerosols internally mixing with brown carbon can even show lower AAE than pure BC particles. The AAE of BC with brown coatings is highly sensitive to the absorbing volume fraction of the coating, coated volume fraction of BC, shell ∕ core ratio, and particle size distribution with a wide variation, whereas the impacts of BC geometry and BC position within the coating are negligible. The AAE of BC with brown coatings can be larger than 3.0 if there are plenty of small-sized coated BC particles, heavy coating, or a large amount of brown carbon. However, the AAE of BC with non-absorbing coating appears to be weakly sensitive to particle microphysics with values around 1.0 (i.e., 0.7–1.4), suggesting the substantial role of the absorbing volume fraction of the coating in AAE determination. With more realistic BC geometries, our study also indicates that the occurrence of brown carbon may not be confidently determined unless AAE > 1.4. The currently popular core–shell Mie model reasonably approximates the AAE of fully coated BC by brown carbon, whereas it underestimates the AAE of partially coated or externally attached BC and underestimates more for a lower coated volume fraction of BC. In addition, we present a parameterization of the AAE of coated BC with a size distribution on the basis of numerical results, which can act as a guide for the AAE response to the absorbing volume fraction of the coating, coated volume fraction of BC, and shell ∕ core ratio. The proposed parameterization of coated BC AAE generates a decent prediction for moderate BC microphysics, whereas caution should be taken in applying it for extreme cases, such as externally attached coated BC morphology. Our findings could improve the understanding and application of the AAE of BC with brown coatings.


2020 ◽  
Author(s):  
Xiaolin Zhang ◽  
Mao Mao ◽  
Shihao Tang

Abstract. Aerosol absorption Angstrom exponent (AAE) is a crucial optical parameter for their apportionment and characterization. Due to considerable inconsistences associated with observations, a numerical research is a powerful means to give better understanding of the AAE of aged BC aerosols. Numerical studies of the AAE of polydisperse BC aggregates with brown coatings using the exact multiple-sphere T-matrix method (MSTM) are performed. The objective of the study is to thoroughly assess the AAE of coated BC influenced by their observation-based detailed microphysics and then provide a new AAE parameterization for application. At odds with our expectations, BC coated by thin brown carbon with more large particles can have an AAE smaller than 1.0, indicating that BC aerosols internally mixing with brown carbon can even show lower AAE than pure BC particles. The AAE of BC with brown coatings is highly sensitive to absorbing volume fraction of coating, coated volume fraction of BC, shell / core ratio, and particle size distribution with a wide variation, whereas the impacts of BC geometry and BC position within coating are trivial. The AAE of BC with brown coatings can be larger than 3.0, if there are more small coated BC particles, heavy coating, or more brown carbon. However, the AAE of BC with non-absorbing coating shows weakly sensitive to particle microphysics with values around 1.0 (i.e., 0.7–1.4), suggesting the substantial role of absorbing volume fraction of coating in the AAE determination. With more realistic BC geometries, our study also indicates that occurrence of brown carbon may be made confidently unless AAE > 1.4. In addition, we present a parameterization of the AAE of coated BC with a size distribution on the basis of numerical results, which can act as a guide for the AAE response to absorbing volume fraction of coating, coated volume fraction of BC, and shell / core ratio. Our findings can improve the understanding and application of the AAE of BC with brown coatings.


2020 ◽  
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath

&lt;p&gt;Black carbon (BC) aerosols over the Indian subcontinent have been represented inadequately so-far in chemical transport models restricting the accurate assessment of BC-induced climate impacts. The divergence between simulated and measured BC concentration has specifically been reported to be large over the Indo-Gangetic Plain (IGP) during winter when a large BC burden is observed. In this study, we evaluate the BC transport simulations over the IGP in a high resolution (0.1&amp;#186; &amp;#215; 0.1&amp;#186; ) chemical transport model, CHIMERE. We examine the model efficiency to simulate the observed BC distribution executing five sets of simulation experiments: &lt;em&gt;Constrained &lt;/em&gt;and&lt;em&gt; bottomup&lt;/em&gt; (&lt;em&gt;Smog, Pku, Edgar, Cmip&lt;/em&gt;) implementing respectively, the recently estimated India-based constrained BC emission and the latest bottom-up BC emissions (India-based: Smog-India, and global: Coupled Model Intercomparison Project phase 6 (CMIP6), Emission Database for Global Atmospheric Research-V4 (EDGAR-V4) and Peking University BC Inventory (PKU)). The mean BC emission flux over most of the IGP from the five emission datasets is considerably high (450&amp;#8211;1000 kg km&lt;sup&gt;-2&lt;/sup&gt; y&lt;sup&gt;-1&lt;/sup&gt;) with a relatively low divergence obtained for the eastern and upper-mideastern IGP. Evaluation of BC transport simulations shows that the spatial and temporal gradient in the simulated BC concentration from the &lt;em&gt;Constrained &lt;/em&gt;was equivalent to that from the &lt;em&gt;bottomup&lt;/em&gt; and also to that from observations. This indicates that the spatial and temporal patterns of BC concentration are consistently simulated by the model processes. However, the efficacy to simulate BC distribution is commendable for the estimates from &lt;em&gt;Constrained&lt;/em&gt; for which the lowest normalised mean bias (NMB, &lt; 20%) is obtained in comparison to that from the &lt;em&gt;bottomup&lt;/em&gt; (37&amp;#8211;52%). 75&amp;#8211;100% of the observed all-day (daytime) mean BC concentration is simulated most of the times (&gt;80% of the number of stations data) for &lt;em&gt;Constrained&lt;/em&gt;, whereas, this being less frequent (&lt;50%) for the &lt;em&gt;Pku, Smog, Edgar&lt;/em&gt; and poor for &lt;em&gt;Cmip&lt;/em&gt;. The BC-AOD (0.04&amp;#8211;0.08) estimated from the &lt;em&gt;Constrained&lt;/em&gt; is 20&amp;#8211;50% higher than the &lt;em&gt;Pku&lt;/em&gt; and &lt;em&gt;Smog&lt;/em&gt;. Three main hotspot locations comprising of a large value of BC load are identified over the eastern, mideastern, and northern IGP. Assessment of the effect of BC burden on the wintertime radiative perturbation over the IGP shows that the presence of BC aerosols in the atmosphere enhances atmospheric heating by 2&amp;#8211;3 times more compared to that considering atmosphere without BC. Also, a net warming at the top of the atmosphere (TOA) by 10&amp;#8211;17 W m&lt;sup&gt;-&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt; is noticed from the &lt;em&gt;Constrained&lt;/em&gt;, with the largest value estimated in and around megacities (Kolkata and Delhi) that extends to the eastern coast. This value is higher by 10&amp;#8211;20% than that from &lt;em&gt;Cmip&lt;/em&gt; over the IGP and by 2&amp;#8211;10% than that from &lt;em&gt;Smog&lt;/em&gt; over Delhi and eastern part of the IGP.&lt;/p&gt;


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 254
Author(s):  
Wei Wen ◽  
Xin Ma ◽  
Chunwei Guo ◽  
Xiujuan Zhao ◽  
Jing Xu ◽  
...  

The Beijing-Tianjin-Hebei (BTH) region experienced heavy air pollution in December 2015, which provided a good opportunity to explore the aerosol-radiation interaction (ARI) effects of different particulate matter (PM) components (sulfate, nitrate, and black carbon (BC)). In this study, five tests were conducted by the Weather Research and Forecasting—Chemistry (WRF-Chem) model. The tests included scenario 1 simulation with ARI turned on, scenario 2 simulation with ARI turned off, scenario3 simulation without NOx/NO3− emissions and with ARI turned on, scenario 4 simulation without SO2/SO42− emissions and with ARI turned on, and scenario 5 simulation without BC emissions and with ARI turned on. The ARI decreased the downward shortwave radiation (SWDOWN) and the temperature at 2 m (T2), reduced the planetary boundary layer (PBL) height (PBLH), and increased the relative humidity (RH) at 2 m in the region. These factors also contribute to pollution accumulation. The results revealed that BC aerosols have a stronger effect on the reduction in SWDOWN than sulfate (SO42−) and nitrate (NO3−). BC aerosols produce both cooling and heating effects, while SO42− aerosols produce only cooling effects. The PBL decreased and RH2 increased due to the aerosol feedback effect of sulfate, nitrate, and BC. The ARI effect on meteorological factors during the nonheavy pollution period was much smaller than that during the pollution period.


2019 ◽  
Vol 19 (11) ◽  
pp. 7759-7774 ◽  
Author(s):  
Qiuji Ding ◽  
Jianning Sun ◽  
Xin Huang ◽  
Aijun Ding ◽  
Jun Zou ◽  
...  

Abstract. Aerosols can not only participate in fog formation by acting as condensation nuclei of droplets but also modify the meteorological conditions such as air temperature and moisture, planetary boundary layer height (PBLH) and regional circulation during haze events. The impact of aerosols on fog formation, yet to be revealed, can be critical in understanding and predicting fog–haze events. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to investigate a heavy fog event during a multiday intense haze pollution episode in early December 2013 in the Yangtze River Delta (YRD) region in eastern China. Using the WRF-Chem model, we conducted four parallel numerical experiments to evaluate the roles of aerosol–radiation interaction (ARI), aerosol–cloud interaction (ACI), black carbon (BC) and non-BC aerosols in the formation and maintenance of the heavy fog event. We find that only when the aerosols' feedback processes are considered can the model capture the haze pollution and the fog event well. And the effects of ARI during the fog–haze episode in early December 2013 played a dominant role, while the effects of ACI were negligible. Furthermore, our analyses show that BC was more important in inducing fog formation in the YRD region on 7 December than non-BC aerosols. The dome effect of BC leads to an increase in air moisture over the sea by reducing PBLH and weakening vertical mixing, thereby confining more water vapor to the near-surface layer. The strengthened daytime onshore flow by a cyclonic wind anomaly, induced by contrast temperature perturbation over land and sea, transported moister air to the YRD region, where the suppressed PBLH and weakened daytime vertical mixing maintained the high moisture level. Then heavy fog formed due to the surface cooling at night. This study highlights the importance of anthropogenic emissions in the formation of advection–radiation fog in the polluted coastal areas.


2019 ◽  
Author(s):  
Qiuji Ding ◽  
Jianning Sun ◽  
Xin Huang ◽  
Aijun Ding ◽  
Jun Zou ◽  
...  

Abstract. Aerosols can not only participate in fog formation by acting as condensation nuclei of droplets but also modify the meteorological conditions such as air temperature and moisture, planetary boundary layer height (PBLH) and regional circulation during haze event. The impact of aerosols on fog formation, yet to be revealed, can be critical in understanding and predicting of fog-haze event. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to investigate a heavy fog event during a multiday intense haze pollution episode in early December 2013 in the Yangtze River Delta (YRD) region in eastern China. Using the WRF-Chem model, we conducted four parallel numerical experiments to evaluate the roles of aerosol-radiation interaction (ARI), aerosol-cloud interaction (ACI), black carbon (BC) and none BC (non-BC) aerosols in the formation and maintenance of the heavy fog event. Only when the aerosols' feedback processes are considered can the model well capture the haze pollution and the fog event. We find that the ARI dominates this fog-haze episode while the effects of ACI are negligible. Our analyses shows that BC plays a more important role in fog formation than non-BC aerosols. The dome effect of BC leads to an increase of air moisture over the sea by reducing PBLH and weakening vertical mixing, thereby confining more water vapor in the near-surface layer. The strengthened daytime onshore flow by a cyclonic wind anomaly, induced by contrast temperature perturbation over land and sea, transports moister air to the YRD region, where the suppressed PBLH and weakened daytime vertical mixing maintain the high moisture level. Then the heave fog forms due to the surface cooling at night in this region. This study highlights the importance of anthropogenic emissions in the formation of advection-radiation fog in the polluted coastal areas.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Xingxing Ma ◽  
Hongnian Liu ◽  
Xueyuan Wang ◽  
Zhen Peng

In this paper, based on the principle of Mie scattering, we calculated the optical parameters of BC aerosols at different scales and then applied the new optical parameters to simulate the BC aerosols concentration distribution, radiative forcing, and their climate effects. We also compared the results of optical parameters of BC aerosols with homogeneous scales and analyzed the effect on climate. Compared with the conventional uniform-scheme optical parameterization, the concentrations of the first mode of BC aerosols simulated with the optical parameters that were recalculated based on the particle size are significantly higher, while the concentrations of the other modes and the total of BC aerosols are lower. In the respective of statistics, the changes of column burdens of BC in four modes are 0.085, −0.095, −0.089, −0.054 mg/m2. The clear-sky TRF of BC are weakened in the value of 0.03 W/m2 averaged over the domain, while the all-sky TRF of BC are enhanced of  0.06 W/m2 in general. The warming effect of BC becomes weaker when using the new scheme by −0.04 K to −0.24 K. When using the new optical parameters scheme, the regional average surface concentrations of BC in four modes are 0.372, 0.264, 0.055 and 0.004 μg/m3, respectively. Especially, the first and the second mode account for as large as 53% and 38%. The surface concentration and column burden of total BC are 0.69 μg/m3 and 0.28 mg/m2 can be dropped. The regional average direct RFs of BC at the top of the atmosphere are 0.49 W/m2 under clear-sky and 0.36 W/m2 under all-sky averaged over the domain. Over most areas of central China, North China, and East China, BC may increase the temperature in a range of 0.05∼0.15 K, while over South China, BC shows cooling effect. In average, the precipitation variations caused by BC over East China, North China, South China, and Northeast China are −0.83, −0.05, −0.11, and −0.13 mm/d, respectively. As a whole, the variations of circulation, pressure, and temperature show a good correspondence.


2018 ◽  
Vol 18 (20) ◽  
pp. 15201-15218 ◽  
Author(s):  
Kangning Li ◽  
Xingnan Ye ◽  
Hongwei Pang ◽  
Xiaohui Lu ◽  
Hong Chen ◽  
...  

Abstract. Black carbon (BC) aerosols in the atmosphere strongly affect radiative forcing. They are mainly removed from the air by wet deposition, and their lifetime is controlled by their water uptake ability or hygroscopicity, which is a function of aerosol mixing states. It is well known that atmospheric aging processes coat various materials on BC aerosols and affect their mixing states and hygroscopicity. However, detailed relations between the aging processes and the hygroscopicity and mixing state of BC aerosol particles in polluted city areas are not well understood. Here, we studied the temporal variation in hygroscopicity and its correlation with the mixing state of ambient BC particles during the summer of 2017 in Shanghai, China, using a hygroscopic tandem differential mobility analyzer inline with a single-particle soot photometer (HTDMA–SP2 system) as well as a single-particle aerosol mass spectrometer (SPAMS). BC particles with 120, 240, and 360 nm in dry diameter were humidified at relative humidity (RH)  =  85 %. After humidification, particles with growth factors (GFs) of 1.0, 1.2, and 1.4, representing the BC particles with different hygroscopicities (hydrophobic, transition, and hydrophilic modes, respectively), were analyzed with a SP2 to obtain their BC mixing states. The diurnal trends in coating thickness and chemical mixing state show that coating materials of BC particles were distinct between daytime and nighttime. The differences were associated with the hygroscopicity of BC particles. Single-particle mass spectrometry and other chemical characterization techniques revealed that with lower temperature and higher RH during nighttime, formation or condensation of nitrates resulted in an enhanced hygroscopicity of BC particles. During daytime, secondary organic carbon formation was mainly responsible for the change of hygroscopicity of BC particles. Due to the high hygroscopicity of inorganic nitrate, a thinner nitrate coating on BC particles could convert fresh BC particles to aged hygroscopic ones during nighttime while a thicker coating layer of secondary materials was required to reach the same overall hygroscopicity during daytime because of the participation of secondary organic carbon. Different atmospheric aging processes between daytime and nighttime led to the change of BC particles' mixing states, which play a fundamental role in determining their hygroscopicity. To our knowledge, this is the first report of links between temporal variations in the hygroscopic growth of BC particles and atmospheric aging processes in polluted environments. These findings have significant ramifications in understanding the aging process, wet removal, and climate effects of BC particles.


Sign in / Sign up

Export Citation Format

Share Document