pressure decay
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 31)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
R. Kapulla ◽  
S. Paranjape ◽  
M. Fehlmann ◽  
S. Suter ◽  
U. Doll ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 295-297
Author(s):  
Ben Laurich

Abstract. The German repository site selection procedure calls for a radioactive waste containment zone with a low-permeability host rock (kf<10-10 m s−1, StandAG §23, 5) and long-term sealing by barrier materials (EndlSiAnfV, 2020; ESK, 2019). The potential host rocks, clay and rock salt, as well as the considered barrier materials, bentonite and compacted crushed salt, show permeability in the range of kf∼10-16 m s−1 (K∼10-21 m2). These low values suggest that advective flow is as slow as diffusive mass flux. Measuring such low permeability with adequate accuracy challenges measurement setups and respective error evaluation. Methodologies. Several low-permeability measurements are carried out by transient tests, e.g. by monitoring controlled fluid pressure changes in: (1) pressure decay and (2) oscillating pulse tests. The first method (1) deviates permeability from the time needed to compensate pressure differences through the sample. The latter (2) monitors phase shift and amplitude attenuation of controlled pressure pulses passing through the sample. Any permeability measurement needs to be post-processed, e.g. for: (1) material-intrinsic controls (saturation state, storativity, the fluids' compressibility, etc.), (2) environmental controls (temperature, confining pressures, etc.) and (3) theoretical considerations (Klinkenberg correction, multi-phase wetting angles, etc.). Salts. A porosity-permeability relation was found down to K=10-19 m2 (e.g., Popp et al., 2007). Testing fluids were NaCl brine, oils, He and N2 as a fluid. As a matter of current research, a critical, low-permeability value might be associated with the so-called “percolation threshold” that defines the minimal requirements for an interconnected pore system (e.g., DAEF, 2016). Clays. A major challenge is the long duration of sample saturation (up to several months) and pressure equilibration (often days), as well as precise, temperature-compensated measuring and the determination of the samples' storativity (e.g., Winhausen et al., 2021). Testing fluids are commonly designed mixtures mimicking the rocks' pore waters. Geotechnical barrier materials. The permeability testing performed is similar to that of salt and clays mentioned above. However, both barrier materials, crushed salt and bentonite, have significant permeability early after emplacement. This is beneficial, as it allows the outflow of unwanted canister corrosion gases. Eventually, the permeability drops by orders of magnitude and the barriers become tight seals in the long-term. Here, identifying the gas entry/breakthrough pressure has been valuable (e.g., Rothfuchs et al., 2007). Figure 1 shows a preliminary sensitivity analysis as an example of pressure decay measurements. It suggests that the pressure equilibration term (c), and hence the test duration, is most sensitive to the calculation of low permeability. However, the large variation of (representative) material and environmental controls make permeability measurements complex. This workshop aims to encourage discussions on uncertainty and sensitivity of the influencing controls, such that it may lead to a “best-practice” guide for permeability measurements.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Naren Shankar R. ◽  
Ganesan V.G. ◽  
Dilip Raja N. ◽  
Sathish Kumar K. ◽  
Vijayaraja K.

Purpose The effect of increasing lip thickness (LT) and Mach number on subsonic co-flowing Jet (CFJ) decay at subsonic and correctly expanded sonic Mach numbers has been analysed experimentally and numerically in this study. This study aims to a critical LT below which mixing enhances and above which mixing inhibits. Design/methodology/approach LT is the distance, separating the primary nozzle and the secondary duct, present in the co-flowing nozzle. The CFJ with LT ranging from 2 mm to 150 mm at jet exit Mach numbers of 0.6, 0.8 and 1.0 were studied in detail. The CFJ with 2 mm LT is used for comparison. Centreline total pressure decay, centreline static pressure decay and near field flow behaviour were analysed. Findings The result shows that the mixing enhances until a critical limit and a further increase in the LT does not show any variation in the jet mixing. Beyond this critical limit, the secondary jet has a detrimental effect on the primary jet, which deteriorates the process of mixing. The CFJ within the critical limit experiences a significantly higher mixing. The effect of the increase in the Mach number has marginal variation in the total pressure and significant variation in static pressure along the jet axis. Practical implications In this study, the velocity ratio (VR) is maintained constant and the bypass ratio (BR) was varied from low value to very high values for subsonic and correctly expanded sonic. Presently, commercial aircraft engine operates under these Mach numbers and low to ultra-high BR. Hence, the present study becomes essential. Originality/value This is the first effort to find the critical value of LT for a constant VR for a Mach number range of 0.6 to 1.0, compressible CFJ. The CFJs with constant VR of unity and varying LT, in these Mach number range, have not been studied in the past.


2021 ◽  
Author(s):  
Kai Cheng ◽  
◽  
J. Alex Zumberge ◽  
Stephanie E. Perry ◽  
Patrick M. Lasswell ◽  
...  

Legacy crushed rock analysis, as applied to unconventional formations, has shown great success in evaluating total porosity and water saturation over the previous three decades. The procedure of crushing rock into small particles improves the efficiency of fluid recovery and grain volume measurements in a laboratory environment. However, a caveat to crushed rock analysis is that water and volatile hydrocarbon evaporate from the rock during the preparatory crushing process, causing significant uncertainty in water saturation assessment. A modified crushed rock analysis incorporates nuclear magnetic resonance (NMR) measurements before and after the crushing process to quantify the volume of fluid loss. The advancements improve the overall total saturation quantification. However, challenges remain in the quantification of partitioned water and hydrocarbon loss currently derived from NMR spectrum along with its uncertainty. Furthermore, pressure decay permeability from crushed rock analysis has been reported to have two to three orders of magnitude difference between different labs. The calculated pressure decay permeability of the same rock could even vary several orders of magnitude difference with different crushed size, which questions the quality of the crushed pressure decay permeability. In this paper, we introduce an intact rock analysis workflow on unconventional cores for improved assessment of water saturation and enhanced quantification of fast pressure decay matrix permeability from intact rock. The workflow starts with acquisition of NMR T2 and bulk density measurements on the as-received state intact rock. Instead of crushing the rock, the intact rock is directly transferred to a retort chamber and heated to 300 °C for thermal extraction. The volumes of thermally-recovered fluids are quantified through an image-based process. The grain volume measurement and a second NMR T2 measurement are performed on post retort intact rock. The pressure decay curve during grain volume measurement is then used for calculating pressure decay matrix permeability. Total porosity is calculated using bulk volume and grain volume of the rock. Water saturation is quantified using total volume of recovered water. In addition, the twin as-received state rocks are processed through the crushed rock analysis workflow for an apple-to-apple comparison. Meanwhile, pressure decay permeability is cross-validated against the steady state permeability of the same sample. The introduced workflow has been successfully tested on different formations, including Bakken, Bone Spring, Eagle Ford, Cotton Valley, and Niobrara. The results show that total porosities calculated from intact rock analysis are consistent with total porosities from crushed rock analysis, while water saturations from the new workflow are average 8%SU (0.2–0.7%PU of bulk volume water) higher than those from the prior crushed rock workflow. The study also indicated that for some formations (e.g., Bone Spring) the fluid loss during crushing process is dominated by water, however, for some other formations (e.g., Bakken), hydrocarbon loss is significant. Pressure decay permeability quantified using intact rock analysis is also confirmed within an order of magnitude of steady state matrix permeability.


2021 ◽  
Vol 60 (15) ◽  
pp. 5494-5503
Author(s):  
Valerio Loianno ◽  
Antonio Baldanza ◽  
Giuseppe Scherillo ◽  
Rezvan Jamaledin ◽  
Pellegrino Musto ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19712-19722
Author(s):  
Zhixing Wang ◽  
Jirui Hou

Herein, the pressure decay method was improved to obtain the CO2 diffusion coefficient in fractured-vuggy carbonate reservoirs at 393 K and 50 MPa and obtained good correlation results between bulk and porous media by porosity and tortuosity.


Sign in / Sign up

Export Citation Format

Share Document