bimolecular reaction
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 24)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 37 (6) ◽  
pp. 1429-1433
Author(s):  
Gami Girishkumar Bhagavanbhai ◽  
Rawesh Kumar

The rate equations in kinematics are expressed through basic laws under surface reaction as well as non-surface reaction. Rate law is center theme of non-surface reaction whereas Langmuir adsorption isotherms are basis of surface reaction rate expressions. A modified rate equation for bimolecular reaction is presented which considers both catalyst surface affairs as well as fraction of successful collision of different reactant for cracking and forming bonds. The modified rate law for bimolecular reaction for surface as well as non-surface reaction is stated as “Rate of a reaction is directly proportional to concentration as well as catalyst surface affair of each reactant” as r = k ΩA[A] ΩB[B] where catalyst surface affair of ith species is defined as Ωi = Ki/(1+Ki[i] + Kj[j] + …). Here, Ki is the equilibrium constant of “i” species for adsorption-desorption processes over catalyst. i, j,… indicates the different adsorbed chemical species at uniform catalyst sites and the same [i], [j], … indicates the concentration of different adsorbed chemical species at uniform catalyst sites.


2021 ◽  
Author(s):  
Zahra Gohari-Bajestani ◽  
Xiao Wang ◽  
Amandine Guiet ◽  
Romain Moury ◽  
Jean-Marc Grenèche ◽  
...  

Mixed-metal oxides are generally considered to be the highest-performance catalysts for alkaline water oxidation. Despite significant efforts dedicated to understanding and accelerating their efficiency, most works have been limited investigations of Ni, Co, and Fe oxides, thus overlooking beneficial effects of hetero-anion incorporation. To this end, we report on the development of Co0.5Fe0.5O0.5F1.5 oxyfluoride materials featuring a rutile crystal structure and porous morphology via a scalable and green synthetic route. The catalyst surface, enhanced through electron withdrawing effects imparted by the fluoride ions, give rise to highly effective catalytic sites for electrochemical water oxidation. In particular, their performance across metrics of Tafel slope (27 mV/dec), mass activity (846 A/g at 1.53 V vs. RHE), turnover frequency (21/s at 1.53 V vs. RHE), overpotential (220 mV for 10 mA/cm2), and stability (27 days of continuous operation) largely surpasses most known Co-based catalysts. Mechanistic studies suggest that this performance is driven by a bimolecular, oxygen coupling reaction mechanism through proximal active sites on the catalyst surface, thus enabling a new avenue for achieving accelerated oxygenic electrocatalysis.


Author(s):  
Shuhui Yin ◽  
Qiong Zhu ◽  
Jianyong Liu ◽  
Panwang Zhou

1,1-diamino-2,2-dinitroethene (FOX-7) is a novel energetic material with high performance and low sensitivity. In order to deeply understand the reaction mechanism in the initiation “hot spots” of FOX-7 and reveal the growth mechanism of these initiation “hot spots” in the explosion process, the detailed mechanisms of bimolecular reaction of NO2 and FOX-7, as well as the subsequent reactions have been investigated by the quantum chemical calculations. The mechanism of NO2 and FOX-7 bimolecular reaction and the catalytic effect of NO2 were revealed by three key dissociation paths. It is demonstrated that the NO2 molecule plays an important role in promoting the decomposition of the FOX-7 molecule, and the main exothermic pathways were the reactions between oxidizing intermediates (NO, NO2), and reducing intermediates (CO, NH3).


2021 ◽  
Author(s):  
Christopher D. Holmes

Abstract. The method of entrainment-limited kinetics enables atmospheric chemistry models that do not resolve clouds to simulate heterogeneous (surface and multiphase) cloud chemistry more accurately and efficiently than previous numerical methods. The method, which was previously described for reactions with first-order kinetics in clouds, incorporates cloud entrainment into the kinetic rate coefficient. This technical note shows how bimolecular reactions with second-order kinetics in clouds can also be treated with entrainment-limited kinetics, enabling efficient simulations of a wider range of cloud chemistry reactions. Accuracy is demonstrated using oxidation of SO2 to S(VI) – a key step in formation of acid rain – as an example. Over a large range of reaction rates, cloud fractions, and initial reactant concentrations, the numerical errors in the entrainment-limited bimolecular reaction rates are typically << 1 % and always < 4 %, which is far smaller than the errors found in several commonly used methods of simulating cloud chemistry with fractional cloud cover.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Alexander Mebel ◽  
Vladislav S. Krasnoukhov ◽  
Valeriy N. Azyazov ◽  
Srinivas Doddipatla ◽  
Zhenghai Yang ◽  
...  

2021 ◽  
Author(s):  
Wouter Koopman ◽  
Evgenii Titov ◽  
Radwan Mohamed Sarhan ◽  
Tina Gaebel ◽  
Robin Schürmann ◽  
...  

<div>The plasmon-driven dimerization of 4-nitrothiophenol (4NTP) to 4-4’-dimercaptoazobenzene (DMAB) has become a testbed for understanding bimolecular photoreactions enhanced by nanoscale metals, in particular, regarding the relevance of electron transfer and heat transfer from the metal to the molecule. By adding a methylene group between the thiol bond and the nitrophenyl, we add structural flexibility to the reactant molecule. Time-resolved surface-enhanced Raman-spectroscopy proves that this (4-nitrobenzyl)mercaptan (4NBM) molecule has a larger dimerization rate and dimerization yield than 4NTP and higher selectivity towards dimerization. X-ray photoelectron spectroscopy and density functional theory calculations show that the electron transfer would prefer activation of 4NTP over 4NBM. We conclude that the rate limiting step of this plasmonic reaction is the dimerization step, which is dramatically enhanced by the additional flexibility of the reactant. This study may serve as an example for using nanoscale metals to simultaneously provide charge carriers for bond activation and localized heat for driving bimolecular reaction steps. The molecular structure of reactants can be tuned to control the reaction kinetics.<br></div>


2021 ◽  
Author(s):  
Wouter Koopman ◽  
Evgenii Titov ◽  
Radwan Mohamed Sarhan ◽  
Tina Gaebel ◽  
Robin Schürmann ◽  
...  

<div>The plasmon-driven dimerization of 4-nitrothiophenol (4NTP) to 4-4’-dimercaptoazobenzene (DMAB) has become a testbed for understanding bimolecular photoreactions enhanced by nanoscale metals, in particular, regarding the relevance of electron transfer and heat transfer from the metal to the molecule. By adding a methylene group between the thiol bond and the nitrophenyl, we add structural flexibility to the reactant molecule. Time-resolved surface-enhanced Raman-spectroscopy proves that this (4-nitrobenzyl)mercaptan (4NBM) molecule has a larger dimerization rate and dimerization yield than 4NTP and higher selectivity towards dimerization. X-ray photoelectron spectroscopy and density functional theory calculations show that the electron transfer would prefer activation of 4NTP over 4NBM. We conclude that the rate limiting step of this plasmonic reaction is the dimerization step, which is dramatically enhanced by the additional flexibility of the reactant. This study may serve as an example for using nanoscale metals to simultaneously provide charge carriers for bond activation and localized heat for driving bimolecular reaction steps. The molecular structure of reactants can be tuned to control the reaction kinetics.<br></div>


2021 ◽  
Vol 54 (7) ◽  
pp. 1685-1698
Author(s):  
Jong Goo Kim ◽  
Eun Hyuk Choi ◽  
Yunbeom Lee ◽  
Hyotcherl Ihee
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
pp. eabd4044
Author(s):  
Srinivas Doddipatla ◽  
Galiya R. Galimova ◽  
Hongji Wei ◽  
Aaron M. Thomas ◽  
Chao He ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings—the essential building block of nonplanar PAHs—is still in its infancy. Exploiting crossed molecular beam experiments augmented by electronic structure calculations and astrochemical modeling, we reveal an unusual pathway leading to the formation of indene (C9H8)—the prototype aromatic molecule with a five-membered ring—via a barrierless bimolecular reaction involving the simplest organic radical—methylidyne (CH)—and styrene (C6H5C2H3) through the hitherto elusive methylidyne addition–cyclization–aromatization (MACA) mechanism. Through extensive structural reorganization of the carbon backbone, the incorporation of a five-membered ring may eventually lead to three-dimensional PAHs such as corannulene (C20H10) along with fullerenes (C60, C70), thus offering a new concept on the low-temperature chemistry of carbon in our galaxy.


2021 ◽  
pp. 1-20
Author(s):  
Vladislav Aleksandrovich Balashov ◽  
Evgeny Borisovich Savenkov

We present regularized phase flield model for description of threephase «fluid–fluid–solid» system, where solid body obeys elastic rheology. It is assumed that one of the liquid phases chemically interacts with the solid one. As the corresponding equations of chemical kinetics, simple model equations describing a bimolecular reaction are considered. A feature of the model under consideration is its preliminary regularization according to quasi-hydrodynamic technique. A fully explicit finite difference approximation of this model is presented. Results of a simulation in two-dimensional setting are presented.


Sign in / Sign up

Export Citation Format

Share Document