semiclassical physics
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Enrico Cinti ◽  
Marco Sanchioni

AbstractThe black hole information loss paradox has long been one of the most studied and fascinating aspects of black hole physics. In its latest incarnation, it takes the form of the firewall paradox. In this paper, we first give a conceptually oriented presentation of the paradox, based on the notion of causal structure. We then suggest a possible strategy for its resolutions and see that the core idea behind it is that there are connections that are non- local for semiclassical physics which have nonetheless to be taken into account when studying black holes. We see how to concretely implement this strategy in some physical models connected to the ER=EPR conjecture.


2019 ◽  
Vol 58 (01) ◽  
pp. 1 ◽  
Author(s):  
Ilya O. Sukharevsky ◽  
Mélanie Lebental ◽  
Barbara Dietz ◽  
Clément Lafargue ◽  
Stefan Bittner

Physics Today ◽  
2019 ◽  
Vol 72 (1) ◽  
pp. 56-57
Author(s):  
John McGreevy

2018 ◽  
Author(s):  
Matthias Brack ◽  
Rajat K. Bhaduri

2011 ◽  
Vol 17 (7) ◽  
pp. 1019-1029
Author(s):  
C. A.A. de Carvalho ◽  
M. Peixoto ◽  
D. Pinheiro ◽  
A. A. Pinto

2009 ◽  
Vol 18 (14) ◽  
pp. 2215-2219 ◽  
Author(s):  
SAMIR D. MATHUR

When a shell collapses through its horizon, semiclassical physics suggests that information cannot escape from this horizon. One might hope that nonperturbative quantum gravity effects will change this situation and avoid the information paradox. We note that string theory has provided a set of states over which the wave function of the shell can spread, and that the number of these states is large enough that such a spreading would significantly modify the classically expected evolution. In this article we perform a simple estimate of the spreading time, showing that it is much shorter than the Hawking evaporation time for the hole. Thus information can emerge from the hole through the relaxation of the shell state into a linear combination of fuzzballs.


1998 ◽  
Vol 13 (31) ◽  
pp. 5279-5372 ◽  
Author(s):  
FRANK WILCZEK

The lectures that follow were originally given in 1992, and written up only slightly later. Since then there have been dramatic developments in the quantum theory of black holes, especially in the context of string theory. None of these are reflected here. The concept of quantum hair, which is discussed at length in the lectures, is certainly of permanent interest, and I continue to believe that in some generalized form it will prove central to the whole question of how information is stored in black holes. The discussion of scattering and emission modes from various classes of black holes could be substantially simplified using modern techniques, and from currently popular perspectives the choice of examples might look eccentric. On the other hand fashions have changed rapidly in the field, and the big questions as stated and addressed here, especially as formulated for "real" black holes (nonextremal, in four-dimensional, asymptotically flat space–time, with supersymmetry broken), remain pertinent even as the tools to address them may evolve. The four lectures I gave at the school were based on two lengthy papers that have now been published, "Black Holes as Elementary Particles," Nuclear PhysicsB380, 447 (1992) and "Quantum Hair on Black Holes," Nuclear PhysicsB378, 175 (1992). The unifying theme of this work is to help make plausible the possibility that black holes, although they are certainly unusual and extreme states of matter, may be susceptible to a description using concepts that are not fundamentally different from those we use in describing other sorts of quantum-mechanical matter. In the first two lectures I discussed dilaton black holes. The fact that apparently innocuous changes in the "matter" action can drastically change the properties of a black hole is already very significant: it indicates that the physical properties of small black holes cannot be discussed reliably in the abstract, but must be considered with due regard to the rest of physics. (The macroscopic properties of large black holes, in particular those of astrophysical interest, are presumably well described by the familiar Einstein–Maxwell action which governs the massless fields. Heavy fields will at most provide Yukawa tails to the field surrounding the hole.) I will show how perturbations may be set up and analyzed completely, and why doing this is crucial for understanding the semiclassical physics of the hole including the Hawking radiation quantitatively. It will emerge that there is a class of dilaton black holes which behave as rather straightforward elementary particles. In the other two lectures I discussed the issue of hair on black holes, in particular the existence of hair associated with discrete gauge charges and its physical consequences. This hair is particularly interesting to analyze because it is invisible classically and to all order in ℏ. Its existence shows that black holes can have some "internal" quantum numbers in addition to their traditional classification by mass, charge, and angular momentum. The text that follows, follows the original papers closely.


Sign in / Sign up

Export Citation Format

Share Document