fuzzy programming
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 71)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Yan Sun ◽  
Nan Yu ◽  
Baoliang Huang

AbstractThis paper addresses the multi-objective optimization for the road–rail intermodal routing problem that aims to minimize the total costs and carbon dioxide emissions of the routes. To achieve high timeliness of the entire transportation process, pickup and delivery services are simultaneously improved based on the employment of fuzzy soft time windows to measure their service levels. The modeling of road–rail intermodal routing considers fixed schedules of rail and time flexibility of road to match the real-world transportation scenario, in which travel times and carbon dioxide emission factors of road services are considered to be time-varying. To improve the feasibility of the routing, uncertainty of travel times and carbon dioxide emission factors of road services and capacities of rail services are incorporated into the problem. By applying trapezoidal fuzzy numbers to formulate the uncertainty, we propose a fuzzy multi-objective nonlinear optimization model for the routing problem that integrates the truck departure time planning for road services. After processing the model with fuzzy chance-constrained programming and linearization, we obtain an auxiliary equivalent crisp linear model and solve it by designing an interactive fuzzy programming approach with the Bounded Objective Function method. Based on an empirical case study, we demonstrate the validity of the proposed approach and discuss the effects of improving the confidence levels and service levels on the optimization results. The case analysis reveals several managerial insights that help to realize an efficient transportation organization by making effective trade-offs among lowering costs, reducing emissions, improving service levels, and enhancing feasibility.


Author(s):  
Sapan Kumar Das

AbstractIn this article, we address a fully fuzzy triangular linear fractional programming (FFLFP) problem under the condition that all the parameters and decision variables are characterized by triangular fuzzy numbers. Utilizing the computation of triangular fuzzy numbers and Lexicographic order (LO), the FFLFP problem is changed over to a multi-objective function. Consequently, the problem is changed into a multi-objective crisp problem. This paper outfits another idea for diminishing the computational complexity, in any case without losing its viability crisp LFP issues. Lead from real-life problems, a couple of mathematical models are considered to survey the legitimacy, usefulness and applicability of our method. Finally, some mathematical analysis along with one case study is given to show the novel strategies are superior to the current techniques.


Author(s):  
Vandana Y. Kakran ◽  
Jayesh M. Dhodiya

This paper investigates a multi-objective capacitated solid transportation problem (MOCSTP) in an uncertain environment, where all the parameters are taken as zigzag uncertain variables. To deal with the uncertain MOCSTP model, the expected value model (EVM) and optimistic value model (OVM) are developed with the help of two different ranking criteria of uncertainty theory. Using the key fundamentals of uncertainty, these two models are transformed into their relevant deterministic forms which are further converted into a single-objective model using two solution approaches: minimizing distance method and fuzzy programming technique with linear membership function. Thereafter, the Lingo 18.0 optimization tool is used to solve the single-objective problem of both models to achieve the Pareto-optimal solution. Finally, numerical results are presented to demonstrate the application and algorithm of the models. To investigate the variation in the objective function, the sensitivity of the objective functions in the OVM model is also examined with respect to the confidence levels.


Author(s):  
Sunil B. Bhoi ◽  
Jayesh M Dhodiya

In this paper, a multi-objective faculty course allocation problem with result analysis and feedback analysis based on uncertain preferences mathematical model is presented. To deal with an uncertain model, three different ranking criteria are being used to develop: a) Expected value, b) Optimistic value, c) Dependent optimistic value criterion. These mathematical models are transformed into their corresponding deterministic forms using the basic concepts of uncertainty theory. The deterministic model of DOCM consists of fractional objectives which are converted into their linear form using Charnes and Cooper’s transformation. These deterministic formulations MOFCAP are converted into a single objective problem by using the fuzzy programming technique with linear and exponential membership functions. Further, the single objective problem for all the defined models is solved in the Lingo 18.0 software to derive the Pareto-optimal solution. The sensitivity of the models is also performed to examine the variation in the objective function due to the variation in parameters. Finally, a numerical example is given to exhibit the application and algorithm of the models.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xue Deng ◽  
Xiaolei He ◽  
Cuirong Huang

PurposeThis paper proposes a fuzzy random multi-objective portfolio model with different entropy measures and designs a hybrid algorithm to solve the proposed model.Design/methodology/approachBecause random uncertainty and fuzzy uncertainty are often combined in a real-world setting, the security returns are considered as fuzzy random numbers. In the model, the authors also consider the effects of different entropy measures, including Yager's entropy, Shannon's entropy and min-max entropy. During the process of solving the model, the authors use a ranking method to convert the expected return into a crisp number. To find the optimal solution efficiently, a fuzzy programming technique based on artificial bee colony (ABC) algorithm is also proposed.Findings(1) The return of optimal portfolio increases while the level of investor risk aversion increases. (2) The difference of the investment weights of the optimal portfolio obtained with Yager's entropy are much smaller than that of the min–max entropy. (3) The performance of the ABC algorithm on solving the proposed model is superior than other intelligent algorithms such as the genetic algorithm, differential evolution and particle swarm optimization.Originality/valueTo the best of the authors' knowledge, no effect has been made to consider a fuzzy random portfolio model with different entropy measures. Thus, the novelty of the research is constructing a fuzzy random multi-objective portfolio model with different entropy measures and designing a hybrid fuzzy programming-ABC algorithm to solve the proposed model.


Sign in / Sign up

Export Citation Format

Share Document