ideal magnetohydrodynamics
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 32)

H-INDEX

29
(FIVE YEARS 3)

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2382
Author(s):  
Andrey Saveliev

In this work, we revisit Boltzmann’s distribution function, which, together with the Boltzmann equation, forms the basis for the kinetic theory of gases and solutions to problems in hydrodynamics. We show that magnetic fields may be included as an intrinsic constituent of the distribution function by theoretically motivating, deriving and analyzing its complex-valued version in its most general form. We then validate these considerations by using it to derive the equations of ideal magnetohydrodynamics, thus showing that our method, based on Boltzmann’s formalism, is suitable to describe the dynamics of charged particles in magnetic fields.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Wolfgang Kastaun ◽  
Jay Vijay Kalinani ◽  
Riccardo Ciolfi

Author(s):  
James Wurster

Abstract We investigate and discuss protostellar discs in terms of where the various non-ideal magnetohydrodynamics (MHD) processes are important. We find that the traditional picture of a magnetised disc (where Ohmic resistivity is dominant near the mid-plane, surrounded by a region dominated by the Hall effect, with the remainder of the disc dominated by ambipolar diffusion) is a great oversimplification. In simple parameterised discs, we find that the Hall effect is typically the dominant term throughout the majority of the disc. More importantly, we find that in much of our parameterised discs, at least two non-ideal processes have coefficients within a factor of 10 of one another, indicating that both are important and that naming a dominant term underplays the importance of the other terms. Discs that were self-consistently formed in our previous studies are also dominated by the Hall effect, and the ratio of ambipolar diffusion and Hall coefficients is typically less than 10, suggesting that both terms are equally important and listing a dominant term is misleading. These conclusions become more robust once the magnetic field geometry is taken into account. In agreement with the literature we review, we conclude that non-ideal MHD processes are important for the formation and evolution of protostellar discs. Ignoring any of the non-ideal processes, especially ambipolar diffusion and the Hall effect, yields an incorrect description of disc evolution.


Author(s):  
Christopher Prior ◽  
David MacTaggart

Magnetic winding is a fundamental topological quantity that underpins magnetic helicity and measures the entanglement of magnetic field lines. Like magnetic helicity, magnetic winding is also an invariant of ideal magnetohydrodynamics. In this article, we give a detailed description of what magnetic winding describes, how to calculate it and how to interpret it in relation to helicity. We show how magnetic winding provides a clear topological description of magnetic fields (open or closed) and we give examples to show how magnetic winding and helicity can behave differently, thus revealing different and important information about the underlying magnetic field.


Author(s):  
Daniel Faraco ◽  
Sauli Lindberg ◽  
László Székelyhidi

Abstract We show that in 3-dimensional ideal magnetohydrodynamics there exist infinitely many bounded solutions that are compactly supported in space-time and have non-trivial velocity and magnetic fields. The solutions violate conservation of total energy and cross helicity, but preserve magnetic helicity. For the 2-dimensional case we show that, in contrast, no nontrivial compactly supported solutions exist in the energy space.


Sign in / Sign up

Export Citation Format

Share Document