mmtv promoter
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 0)

H-INDEX

25
(FIVE YEARS 0)

2011 ◽  
Vol 89 (6) ◽  
pp. 522-532 ◽  
Author(s):  
Roberta Oleggini ◽  
Armando Di Donato

Lysyl oxidase (LOX) is the enzyme that facilitates the cross-linking of collagen and elastin, although other functions for this enzyme have been indicated. Of these other functions, we describe herein the ability of LOX to regulate several gene promoters, like collagen III, elastin, and cyclin D1. We have previously demonstrated a specific binding between LOX and histone H1, in vitro. Therefore, we investigated whether LOX would affect the mouse mammary tumor virus (MMTV) promoter and its glucocorticoid regulation, which depends on the phophorylation status of histone H1. Our results show that the over-expression of recombinant human LOX was able to trigger MMTV activity, both in the presence and absence of glucocorticoids. Moreover, we demonstrated that histone H1 from cells expressing recombinant LOX contained isodesmosine and desmosine, indicating specific lysyl-oxidase-dependent lysine modifications. Finally, we were able to co-immunoprecipitate the exogenous LOX and histone H1 from the LOX transfected cells. The data are compatible with a decreased positive charge of histone H1, owing to deamination by LOX of its lysine residues. This event would favor H1 detachment from the target DNA, and consequent opening of the MMTV promoter structure to the activating transcription factors. The presented data, therefore, suggest a possible histone-H1-dependent mechanism for the modulation of MMTV promoter by LOX.


2010 ◽  
Vol 24 (11) ◽  
pp. 2088-2098 ◽  
Author(s):  
Guillermo P. Vicent ◽  
A. Silvina Nacht ◽  
Roser Zaurín ◽  
Cecilia Ballaré ◽  
Jaime Clausell ◽  
...  

Abstract Steroid hormones regulate gene expression by interaction of their receptors with hormone-responsive elements on DNA or with other transcription factors, but they can also activate cytoplasmic signaling cascades. Rapid activation of Erk by progestins via an interaction of the progesterone receptor (PR) with the estrogen receptor is critical for transcriptional activation of the mouse mammary tumor virus (MMTV) promoter and other progesterone target genes. Erk activation leads to the phosphorylation of PR, activation of mitogen- and stress-activated protein kinase 1, and the recruitment of a complex of the three activated proteins and of P300/CBP-associated factor (PCAF) to a single nucleosome, resulting in the phosphoacetylation of histone H3 and the displacement of heterochromatin protein 1γ. Hormone-dependent gene expression requires ATP-dependent chromatin remodeling complexes. Two switch/sucrose nonfermentable-like complexes, Brahma-related gene 1-associated factor (BAF) and polybromo-BAF are present in breast cancer cells, but only BAF is recruited to the MMTV promoter and cooperates with PCAF during activation of hormone-responsive promoters. PCAF acetylates histone H3 at K14, an epigenetic mark recognized by BAF subunits, thus anchoring the complex to chromatin. BAF catalyzes localized displacement of histones H2A and H2B, facilitating access of nuclear factor 1 and additional PR complexes to the hidden hormone-responsive elements on the MMTV promoter. The linker histone H1 is a structural component of chromatin generally regarded as a general repressor of transcription. However, it contributes to a better regulation of the MMTV promoter by favoring a more homogeneous nucleosome positioning, thus reducing basal transcription and actually enhancing hormone induced transcription. During transcriptional activation, H1 is phosphorylated and displaced from the promoter. The kinase cyclin-dependent kinase 2 is activated after progesterone treatment and could catalyze progesterone-induced phosphorylation of histone H1 by chromatin remodeling complexes. The initial steps of gene induction by progestins involve changes in the chromatin organization of target promoters that require the activation of several kinase signaling pathways initiated by membrane anchored PR. Because these pathways also respond to other external signals, they serve to integrate the hormonal response in the global context of the cellular environment.


2010 ◽  
Vol 89 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Guang Yang ◽  
Sanghee Park ◽  
Guangwen Cao ◽  
Alexei Goltsov ◽  
Chengzhen Ren ◽  
...  

2009 ◽  
Vol 389 (3) ◽  
pp. 595-605 ◽  
Author(s):  
Zhigang Kang ◽  
Jeanette I. Webster Marketon ◽  
Antoinette Johnson ◽  
Esther M. Sternberg

2009 ◽  
Vol 7 (1) ◽  
pp. nrs.07008 ◽  
Author(s):  
Guillermo P. Vicent ◽  
Roser Zaurin ◽  
Cecilia Ballaré ◽  
A. Silvina Nacht ◽  
Miguel Beato

Transcription from the mouse mammary tumor virus (MMTV) promoter can be induced by progestins. The progesterone receptor (PR) binds to a cluster of five hormone responsive elements (HREs) and activates the promoter by synergistic interactions with the ubiquitous transcription factor, nuclear factor 1 (NF1). Progesterone treatment of cells in culture leads to activation of the Src/Ras/Erk/Msk1 cascade. Selective inhibition of Erk, or its target kinase Msk1, interferes with chromatin remodeling and blocks MMTV activation. A complex of activated PR, Erk and Msk1 is recruited to promoter after 5 min of hormone treatment and phosphorylates histone H3 at serine 10. This modification promotes the displacement of HP1γ and subsequent chromatin remodeling. Progestin treatment leads to the recruitment of the BAF complex, which selectively displaces histones H2A and H2B from the nucleosome containing the HREs. The acetyltransferase PCAF is also required for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark, which interacts with Brg1 and Brm, anchoring the BAF complex to chromatin. In nucleosomes assembled on either MMTV or mouse rDNA promoter sequences, SWI/SNF displaces histones H2A and H2B from MMTV, but not from the rDNA nucleosome. Thus, the outcome of nucleosome remodeling by purified SWI/SNF depends on DNA sequence. The resultant H3/H4 tetramer particle is then the substrate for subsequent events in induction. Thus, initial activation of the MMTV promoter requires activation of several kinases and PCAF leading to phosphoacetylation of H3, and recruitment of BAF with subsequent removal of H2A/H2B.


2008 ◽  
Vol 19 (8) ◽  
pp. 3308-3322 ◽  
Author(s):  
Thomas A. Johnson ◽  
Cem Elbi ◽  
Bhavin S. Parekh ◽  
Gordon L. Hager ◽  
Sam John

Brahma (BRM) and Brahma-related gene 1 (BRG1) are the ATP-dependent catalytic subunits of the SWI/SNF family of chromatin-remodeling complexes. These complexes are involved in essential processes such as cell cycle, growth, differentiation, and cancer. Using imaging approaches in a cell line that harbors tandem repeats of stably integrated copies of the steroid responsive MMTV-LTR (mouse mammary tumor virus–long terminal repeat), we show that BRG1 and BRM are recruited to the MMTV promoter in a hormone-dependent manner. The recruitment of BRG1 and BRM resulted in chromatin remodeling and decondensation of the MMTV repeat as demonstrated by an increase in the restriction enzyme accessibility and in the size of DNA fluorescence in situ hybridization (FISH) signals. This chromatin remodeling event was concomitant with an increased occupancy of RNA polymerase II and transcriptional activation at the MMTV promoter. The expression of ATPase-deficient forms of BRG1 (BRG1-K-R) or BRM (BRM-K-R) inhibited the remodeling of local and higher order MMTV chromatin structure and resulted in the attenuation of transcription. In vivo photobleaching experiments provided direct evidence that BRG1, BRG1-K-R, and BRM chromatin-remodeling complexes have distinct kinetic properties on the MMTV array, and they dynamically associate with and dissociate from MMTV chromatin in a manner dependent on hormone and a functional ATPase domain. Our data provide a kinetic and mechanistic basis for the BRG1 and BRM chromatin-remodeling complexes in regulating gene expression at a steroid hormone inducible promoter.


2007 ◽  
Vol 21 (4) ◽  
pp. 843-856 ◽  
Author(s):  
Sayura Aoyagi ◽  
Trevor K. Archer

Abstract Histone acetylation is a highly dynamic posttranslational modification that plays an important role in gene expression. Previous work showed that promoter histone deacetylation is accompanied by progesterone receptor (PR)-mediated activation of the mouse mammary tumor virus (MMTV) promoter. We investigated the role of this deacetylation and found that this histone deacetylation is not a singular event. In fact, histone acetylation at the MMTV promoter is highly dynamic, with an initial increase in acetylation followed by an eventual net deacetylation of histone H4. The timing of increase in acetylation of H4 coincides with the time at which PR, RNA polymerase II, and histone acetyltransferases cAMP response element-binding protein (CREB)-binding protein and p300 are recruited to the MMTV promoter. The timing in which histone H4 deacetylation occurs (after PR and RNA polymerase II recruitment) and the limited effect that trichostatin A and small interfering RNA knockdown of histone deacetylase (HDAC)3 have on MMTV transcription suggests that this deacetylation activity is not required for the initiation of PR-mediated transcription. Interestingly, two HDACs, HDAC1 and HDAC3, are already present at the MMTV before transcription activation. HDAC association at the MMTV promoter fluctuates during the hormone treatment. In particular, HDAC3 is temporarily undetected at the MMTV promoter within minutes after hormone treatment when the histone H4 acetylation increases but returns to the promoter near the time when histone acetylation levels start to decline. These results demonstrate the dynamic nature of coactivator/corepressor-promoter association and histone modifications such as acetylation during a transcription activation event.


2006 ◽  
Vol 282 (7) ◽  
pp. 4400-4407 ◽  
Author(s):  
Barbara A. Burkhart ◽  
Sarah B. Kennett ◽  
Trevor K. Archer

Histone H3 phosphorylation has been linked to various environmental stress responses and specific chromatin structure. The role of H3 phosphorylation in the osmotic stress response was investigated on the mouse mammary tumor virus (MMTV) promoter in different chromatin configurations. Hormone-dependent transcription from the MMTV promoter is repressed by osmotic stress when the promoter is integrated and has a normal chromatin structure. However, when the MMTV promoter is transiently transfected, the chromatin structure is less organized, and hormone induction is not affected by osmotic stress. On the integrated MMTV promoter, phosphorylation of histone H3 serine 10 and 28 increases in response to osmotic stress, but the transient promoter shows no change. Hormone-dependent glucocorticoid receptor binding is reduced on the repressed promoter, and elevated H3 phosphorylation is temporally correlated with maximal MMTV repression Additionally, the protein kinase C inhibitor rottlerin, but not other kinase inhibitors, blocks both histone H3 phosphorylation and osmotic repression of MMTV transcription. Glucocorticoid receptor binding is inversely correlated with H3 phosphorylation, suggesting that displacement of the glucocorticoid receptor from the promoter is due to H3 phosphorylation and is the mechanism for the osmotic repression of hormone-dependent transcription.


2005 ◽  
Vol 125 (1-2) ◽  
pp. 83-89 ◽  
Author(s):  
Diana A. Stavreva ◽  
James G. McNally
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document