soundness and completeness
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 38)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 43 (4) ◽  
pp. 1-54
Author(s):  
Yusuke Matsushita ◽  
Takeshi Tsukada ◽  
Naoki Kobayashi

Reduction to satisfiability of constrained Horn clauses (CHCs) is a widely studied approach to automated program verification. Current CHC-based methods, however, do not work very well for pointer-manipulating programs, especially those with dynamic memory allocation. This article presents a novel reduction of pointer-manipulating Rust programs into CHCs, which clears away pointers and memory states by leveraging Rust’s guarantees on permission. We formalize our reduction for a simplified core of Rust and prove its soundness and completeness. We have implemented a prototype verifier for a subset of Rust and confirmed the effectiveness of our method.


2021 ◽  
pp. 1-30
Author(s):  
Yaroslav Petrukhin

The aim of the paper is to present some non-standard modalities (such as non-contingency, contingency, essence and accident) based on S5-models in a framework of cut-free hypersequent calculi. We also study negated modalities, i.e. negated necessity and negated possibility, which produce paraconsistent and paracomplete negations respectively. As a basis for our calculi, we use Restall's cut-free hypersequent calculus for S5. We modify its rules for the above-mentioned modalities and prove strong soundness and completeness theorems by a Hintikka-style argument. As a consequence, we obtain a cut admissibility theorem. Finally, we present a constructive syntactic proof of cut elimination theorem.


2021 ◽  
pp. 1-42
Author(s):  
Mo Liu ◽  
Jie Fan ◽  
Hans Van Ditmarsch ◽  
Louwe B. Kuijer

In this paper, we propose three knowability logics LK, LK−, and LK=. In the single-agent case, LK is equally expressive as arbitrary public announcement logic APAL and public announcement logic PAL, whereas in the multi-agent case, LK is more expressive than PAL. In contrast, both LK− and LK= are equally expressive as classical propositional logic PL. We present the axiomatizations of the three knowability logics and show their soundness and completeness. We show that all three knowability logics possess the properties of Church-Rosser and McKinsey. Although LK is undecidable when at least three agents are involved, LK− and LK= are both decidable.


Author(s):  
Sandra M. López

Six hopefully interesting variants of the logics BN4 and E4 – which can be considered as the 4-valued logics of the relevant conditional and (relevant) entailment, respectively – were previously developed in the literature. All these systems are related to the family of relevant logics and contain Routley and Meyer's basic logic B, which is well-known to be specifically associated with the ternary relational semantics. The aim of this paper is to develop reduced general Routley-Meyer semantics for them. Strong soundness and completeness theorems are proved for each one of the logics.


Author(s):  
Rea Golan

AbstractI explore, from a proof-theoretic perspective, the hierarchy of classical and paraconsistent logics introduced by Barrio, Pailos and Szmuc in (Journal o f Philosophical Logic, 49, 93-120, 2021). First, I provide sequent rules and axioms for all the logics in the hierarchy, for all inferential levels, and establish soundness and completeness results. Second, I show how to extend those systems with a corresponding hierarchy of validity predicates, each one of which is meant to capture “validity” at a different inferential level. Then, I point out two potential philosophical implications of these results. (i) Since the logics in the hierarchy differ from one another on the rules, I argue that each such logic maintains its own distinct identity (contrary to arguments like the one given by Dicher and Paoli in 2019). (ii) Each validity predicate need not capture “validity” at more than one metainferential level. Hence, there are reasons to deny the thesis (put forward in Barrio, E., Rosenblatt, L. & Tajer, D. (Synthese, 2016)) that the validity predicate introduced in by Beall and Murzi in (Journal o f Philosophy, 110(3), 143–165, 2013) has to express facts not only about what follows from what, but also about the metarules, etc.


2021 ◽  
Vol 22 (3) ◽  
pp. 1-16
Author(s):  
Andrej Dudenhefner ◽  
Paweł Urzyczyn

We propose a notion of the Kripke-style model for intersection logic. Using a game interpretation, we prove soundness and completeness of the proposed semantics. In other words, a formula is provable (a type is inhabited) if and only if it is forced in every model. As a by-product, we obtain another proof of normalization for the Barendregt–Coppo–Dezani intersection type assignment system.


2021 ◽  
Author(s):  
Arun Kumar ◽  
Shilpi Kumari

Abstract In this article, we propose 3-valued semantics of the logics compatible with Stone and dual Stone algebras. We show that these logics can be considered as 3-valued by establishing soundness and completeness results. We also show that rough set theory can be modelled by these logics where the third value can be interpreted as not certain but possible.


2021 ◽  
Vol 43 (2) ◽  
pp. 1-55
Author(s):  
Bernardo Toninho ◽  
Nobuko Yoshida

This work exploits the logical foundation of session types to determine what kind of type discipline for the Λ-calculus can exactly capture, and is captured by, Λ-calculus behaviours. Leveraging the proof theoretic content of the soundness and completeness of sequent calculus and natural deduction presentations of linear logic, we develop the first mutually inverse and fully abstract processes-as-functions and functions-as-processes encodings between a polymorphic session π-calculus and a linear formulation of System F. We are then able to derive results of the session calculus from the theory of the Λ-calculus: (1) we obtain a characterisation of inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our results to account for value and process passing, entailing strong normalisation.


2021 ◽  
Vol 18 (2) ◽  
Author(s):  
Tore Fjetland Øgaard

Restall set forth a "consecution" calculus in his An Introduction to Substructural Logics. This is a natural deduction type sequent calculus where the structural rules play an important role.  This paper looks at different ways of extending Restall's calculus. It is shown that Restall's weak soundness and completeness result with regards to a Hilbert calculus can be extended to a strong one so as to encompass what Restall calls proofs from assumptions. It is also shown how to extend the calculus so as to validate the metainferential rule of reasoning by cases, as well as certain theory-dependent rules.


Sign in / Sign up

Export Citation Format

Share Document