Purpose
Sonar sensor-based mobile robot mapping is an efficient and low cost technique for the application such as localization, autonomous navigation, SLAM and path planning. In multi-robots system, numbers of sonar sensors are used and the sound waves from sonar are interacting with the sound wave of other sonar causes wave interference. Because of wave interference, the generated sonar grid maps get distorted which resulted in decreasing the reliability of mobile robot’s navigation in the generated grid maps. This research study focus in removing the effect of wave interfaces in the sonar mapping to achieve robust navigation of mobile robot.
Design/methodology/approach
The wrong perception (occupancy grid map) of the environment due to cross talk/wave interference is eliminated by randomized the triggering time of sonar by varying the delay/sleep time of each sonar sensor. A software-based approach randomized triggering technique (RTT) is design in laboratory virtual instrument engineering workbench (LabVIEW) that randomized the triggering time of the sonar sensor to eliminate the effect of wave interference/cross talk when multiple sonar are placed in face-forward directions.
Findings
To check the reliability of the RTT technique, various real-world experiments are perform and it is experimentally obtained that 64.8% improvement in terms of probabilities in the generated occupancy grid map has been attained when compared with the conventional approaches.
Originality/value
This proposed RTT technique maybe implementing for SLAM, reliable autonomous navigation, optimal path planning, efficient robotics vision, consistent multi-robotic system, etc.