simplicial poset
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
T. Kyle Petersen

International audience For any Coxeter system (W, S) of rank n, we introduce an abstract boolean complex (simplicial poset) of dimension 2n − 1 which contains the Coxeter complex as a relative subcomplex. Faces are indexed by triples (J,w,K), where J and K are subsets of the set S of simple generators, and w is a minimal length representative for the double parabolic coset WJ wWK . There is exactly one maximal face for each element of the group W . The complex is shellable and thin, which implies the complex is a sphere for the finite Coxeter groups. In this case, a natural refinement of the h-polynomial is given by the “two-sided” W -Eulerian polynomial, i.e., the generating function for the joint distribution of left and right descents in W .


10.37236/8015 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
T. Kyle Petersen

For any Coxeter system $(W,S)$ of rank $n$, we study an abstract boolean complex (simplicial poset) of dimension $2n-1$ that contains the Coxeter complex as a relative subcomplex. For finite $W$, this complex is first described in work of Hultman. Faces are indexed by triples $(I,w,J)$, where $I$ and $J$ are subsets of the set $S$ of simple generators, and $w$ is a minimal length representative for the parabolic double coset $W_I w W_J$. There is exactly one maximal face for each element of the group $W$. The complex is shellable and thin, which implies the complex is a sphere for the finite Coxeter groups. In this case, a natural refinement of the $h$-polynomial is given by the "two-sided" $W$-Eulerian polynomial, i.e., the generating function for the joint distribution of left and right descents in $W$.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jonathan Browder ◽  
Steven Klee

International audience The family of Buchsbaum simplicial posets generalizes the family of simplicial cell manifolds. The $h'-$vector of a simplicial complex or simplicial poset encodes the combinatorial and topological data of its face numbers and the reduced Betti numbers of its geometric realization. Novik and Swartz showed that the $h'-$vector of a Buchsbaum simplicial poset satisfies certain simple inequalities. In this paper we show that these necessary conditions are in fact sufficient to characterize the h'-vectors of Buchsbaum simplicial posets with prescribed Betti numbers.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Bridget Eileen Tenner

International audience The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the group. In a Coxeter system of rank n, we show that the boolean complex is homotopy equivalent to a wedge of (n-1)-dimensional spheres. The number of these spheres is the boolean number, which can be computed inductively from the unlabeled Coxeter system, thus defining a graph invariant. For certain families of graphs, the boolean numbers have intriguing combinatorial properties. This work involves joint efforts with Claesson, Kitaev, and Ragnarsson. \par L'ordre de Bruhat munit tout groupe de Coxeter d'une structure de poset. L'idéal composé des éléments de ce poset engendrant des idéaux principaux ordonnés booléens, forme un poset simplicial. Ce poset simplicial définit le complexe booléen pour le groupe. Dans un système de Coxeter de rang n, nous montrons que le complexe booléen est homotopiquement équivalent à un bouquet de sphères de dimension (n-1). Le nombre de ces sphères est le nombre booléen, qui peut être calculé inductivement à partir du système de Coxeter non-étiquetté; définissant ainsi un invariant de graphe. Pour certaines familles de graphes, les nombres booléens satisfont des propriétés combinatoires intriguantes. Ce travail est une collaboration entre Claesson, Kitaev, et Ragnarsson.


2006 ◽  
Vol 34 (3) ◽  
pp. 1049-1053 ◽  
Author(s):  
Ezra Miller ◽  
Vic Reiner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document