acidification potential
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 24)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
S. V. Kakareka ◽  
Yu. G. Kokosh ◽  
M. A. Kudrevich

The trends in changing the content of sulfur and nitrogen in atmospheric precipitation in the territory of Minsk over an 18-year period are characterized on the basis of the analysis of the monitoring results of the chemical composition of atmospheric precipitation at the experimental site. A downtrend in the sulfur and nitrogen content combined with an uptrend in the precipitation acidity was identified. An average decrease (trend) in the content of sulfur in atmospheric precipitation for 2002–2019 was 0.019 mg S/dm3/year, of oxidized nitrogen – 0.008 mg/dm3, of reduced nitrogen – 0.019 mg/dm3. Over an 18-year period, the changes in the content of sulfur and nitrogen in atmospheric precipitation decreased the deposition of sulfur on average by 31.3 kg/km2/year, of oxidized nitrogen – by 15.4 kg/km2/year, of reduced nitrogen – by 25.6 kg/km2/year. It is shown that for the period from 2005 to 2012, the acidification potential of the natural environment decreased parallel to the reduction of the sulfur and nitrogen deposition; in the subsequent period, the trend of the acidification potential basically follows the trend of the precipitation of the main cations. It is revealed that the rates of average reduction in the content of oxidized sulfur and oxidized nitrogen in atmospheric precipitation in Minsk for the period from 2002 to 2017 are comparable to the rates of reduction of these compounds at the stations of the EMEP Program in Europe, and exceed those for reduced nitrogen.


Author(s):  
Sushil M. Chaudhari ◽  
Rohit B. Meshram

This paper includes a cradle-to-gate life cycle impact evaluation of gasoline blends in India. The potential environmental impacts of gasoline blends with three major components, i.e., methanol, ethanol, and n-butanol are assessed. The production of methanol from the natural gas reforming process, ethanol from hydrogenation with nitric acid, and n-butanol from the oxo process are considered in the current study. The results show that the gasoline blending with methanol has the lowest impact (11 categories) and is nearly constant from 5 to 15%. For gasoline with ethanol as an additive, the global warming potential, ozone depletion potential, and abiotic depletion potential rise with increasing ethanol addition. Meanwhile, increasing ethanol addition reduces the acidification potential and terrestric ecotoxicity potential impact of gasoline blends. Similarly, gasoline with n-butanol as an additive has higher acidification potential, eutrophication potential, human toxicity potential, terrestric ecotoxicity potential, marine aquatic ecotoxicity potential, and photochemical ozone creation potential compared to methanol and ethanol.


2021 ◽  
Vol 920 (1) ◽  
pp. 012030
Author(s):  
Y S Lim ◽  
T N T Izhar ◽  
I A Zakarya ◽  
S Y Yusuf ◽  
S K Zaaba ◽  
...  

Abstract Expanded polystyrene (EPS) is one of the most common materials used in packaging. In Malaysia, EPS is a type of plastic which is not in the recycling category. Usually, EPS wastes will end up in landfill and incinerator, leading to severe environmental impacts. Therefore, a cradle-to-grave life cycle assessment (LCA) study of EPS was carried out to investigate the potential environmental impacts of EPS. The most significant potential environmental impact will also be identified. Both will be identified under 2 different scenarios. The study was analyzed using GaBi Education Software with the method of TRACI 2.1 to the environmental indicators of global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and ozone depletion potential (ODP). In scenario 1, the emission percentage for GWP, AP, EP, and ODP are 99.73 %, 0.21 %, 0.06 %, and 3x10-6 %, respectively. As for scenario 2, all the 3 conditions show similar trend with scenario 1. The LCA study of EPS is particularly focused on the manufacturing, distribution, and the end-of-lifetime treatments, with the introduction of recycling into the system. The findings show that manufacturing of EPS is the major contributor of the environmental impacts and GWP contributes to the most significant potential environmental impacts. Overall, recycling was found to have the least impact to the environment, which possibly be used as the new end-of-lifetime treatment of EPS in Malaysia.


2021 ◽  
Vol 13 (19) ◽  
pp. 11108
Author(s):  
Elio Romano ◽  
Pasquale De Palo ◽  
Flavio Tidona ◽  
Aristide Maggiolino ◽  
Andrea Bragaglio

Life cycle assessment (LCA) was performed in dairy buffalo farms representative of Southern Italian farming systems, similar due to several characteristics, with the exception of wheat production. This work evaluated the impacts derived from this management choice, comparing farms with wheat crop (WWC) or not (NWC). In agreement with the literature, economic allocation was chosen as a useful strategy to attribute equivalents to by-products, i.e., culled animals; the same criterion was also adopted to assign pollutants to wheat grain, limited to WWC farms. Environmental impacts in terms of Global Warming Potential (GWP, kg CO2 eq), Acidification Potential (AC, g SO2 eq), Eutrophication Potential (EU, g PO43-eq), Agricultural Land Occupation (ALO, m2y) and Water Depletion (WD, m3) were estimated. The production of wheat crop significantly affected (p < 0.05) the Agricultural Land Occupation (ALO) category as WWC farms need adequate land. WWC farms could allow a significant reduction in eutrophication (EU) compared to NWC farms (p < 0.05).


2021 ◽  
Author(s):  
MODESTE Kameni Nematchoua ◽  
Somayeh Asadi ◽  
Donghyun Rim ◽  
Esther Obonyo ◽  
Sigrid Reiter

Abstract Acidification and Eutrophication are two environmental impacts that have a significant effect on air pollution and human health. The quantitative analysis of these two impacts remains hitherto unknown at the scale of new neighborhoods. The main purpose of this research is to evaluate, analysis and compare the acidification and eutrophication potentials of one neighborhood initially located in Belgium. To perform this comparison, the same neighborhood design is applied to in150 countries, but four parameters are adapted to each country: energy mix, local climate, building materials, and occupants’ mobility. In addition, this research evaluates the induced environmental costs of the neighborhood over 100 years and examines the impact of the photovoltaic panel on these environmental impacts. This research, extended to the scale of several nations, will enable new researchers, and especially policy-makers, to measure the effectiveness of sustainable neighborhoods. Eutrophication and acidification potentials were assessed under different phases (construction, use, renovation, and demolition), with Pleiades ACV software. Among the four local parameters (energy mix, local materials, climate, and transport, the energy mix has the most significant effect on the two studied environmental impacts. The results show that 72 %, and 65% of acidification, and eutrophication potentials are produced during the operational phase of the neighborhood. In the case of sustainable neighborhoods, the acidification potential is 22.1% higher in the 10 top Low incomes countries than the 10 top High-income countries. At the neighborhood scale the main eutrophication potential component is water (34.2%), while, the main source of acidification potential is electricity production (45.1%)


2021 ◽  
Vol 22 (2) ◽  
pp. 147-161
Author(s):  
Rahmah Arfiyah Ula ◽  
Agus Prasetya ◽  
Iman Haryanto

ABSTRACT The primary municipal waste treatment in Tuban Regency, East Java, was landfilling, besides the small amount of the waste was turned to compost. Landfilling causes global warming, which leads to climate change due to CH4 emission. This environmental impact could be worst by the population growth that increases the amount of waste. This study aimed to evaluate the environmental impact on waste management in the Gunung Panggung landfill in Tuban Regency and its alternative scenarios using Life Cycle Assessment (LCA). Four scenarios were used in this study. They are one existing scenario and three alternative scenarios comprising landfilling, composting, and anaerobic digestion. The scope of this study includes waste transportation to waste treatment which is landfilling, composting, and anaerobic digestion (AD). The functional unit of this analysis is per ton per year of treated waste. Environmental impacts selected are global warming potential, acidification potential, and eutrophication potential. The existing waste management in Gunung Panggung landfill showed the higher global warming potential because of the emission of CO2 and cost for human health, which is 6.379.506,17 CO2 eq/year and 5,92 DALY, respectively. Scenario 3 (landfilling, composting, and AD; waste sortation 70%) showed a lower environmental impact than others, but improvements were still needed. Covering compost pile or controlling compost turning frequency was proposed for scenario 3 amendment. Keywords: environmental impact, landfill, life cycle assessment, waste management   ABSTRAK Landfill merupakan pengelolaan sampah utama di tempat pemrosesan akhir (TPA) Gunung Panggung Kabupaten Tuban. Selain landfill, pengomposan diterapkan untuk mengolah sebagian kecil sampahnya. Landfill menghasilkan gas metana yang menyebabkan pemanasan global dan memicu perubahan iklim. Pertambahan penduduk memperbanyak sampah yang perlu diolah di TPA dan dapat memperparah dampak lingkungan yang ditimbulkan. Tujuan penelitian ini adalah menilai dampak lingkungan dari pengelolaan sampah eksisting di TPA Gunung Panggung Kabupaten Tuban Jawa Timur beserta skenario alternatifnya menggunakan Life Cycle Assessment (LCA). Terdapat satu skenario eksisting dan tiga skenario alternatif pengelolaan sampah yaitu landfilling, pengomposan, dan fermentasi anaerob (anaerobic digestion). Ruang lingkup studi meliputi pengangkutan sampah, pengelolaan sampah dengan cara pengomposan, Anaerobic Digestion (AD), dan landfill. Satuan fungsional yang digunakan yakni ton sampah yang diolah per tahun. Dampak lingkungan yang dipelajari di antaranya: pemanasan global, asidifikasi, dan eutrofikasi. Dampak lingkungan skenario eksisting menunjukkan nilai tertinggi terutama pada pemanasan global (6.379.506,17 CO2eq/tahun) dan kerugian pada kesehatan manusia (5,92 DALY). Skenario alternatif 3, yang meliputi pengelolaan secara landfill, pengomposan, dan AD menunjukkan dampak lingkungan yang kecil, namun memerlukan perbaikan. Perbaikan untuk skenario 3 yaitu dengan menambahkan penutup pada tumpukan kompos atau mengontrol frekuensi pembalikan kompos untuk mengurangi emisi NH3. Kata kunci: dampak lingkungan, life cycle assessment, pengelolaan sampah, tempat pemrosesan akhir


2021 ◽  
Vol 22 (2) ◽  
pp. 294-305
Author(s):  
Hazleen Anuar ◽  
Siti Munirah Salimah Abd Rashid ◽  
Nurfarahin Mohd. Nordin ◽  
Fathilah Ali ◽  
Yose Fachmi Buys ◽  
...  

As an effort to replace the petroleum-based polymers and reduce waste-related environmental problems, biopolymers are the best candidate due to their renewable, biodegradable and commercially viable. Initiative have been taken by developing durian skin fibre (DSF) reinforced polylactic acid (PLA) biocomposites with the addition of epoxidized palm oil (EPO). PLA/DSF biocomposites were fabricated via extrusion and then injection moulded. The biocomposites were assessed for its life cycle by developing a system boundary related to its fabrication processes using GaBi software. The life cycle assessment (LCA) of PLA/DSF biocomposites show that global warming potential (GWP) and acidification potential (AP) were the major impacts from PLA/DSF biocomposite. For PLA/DSF biocomposite, the results were 199.37 kg CO2 equiv. GWP and 0.58 kg SO2 equiv. AP. Meanwhile, for PLA/DSF/EPO biocomposite, the results obtained were 195.89 kg CO2 equiv. GWP and 0.57 kg SO2 equiv. AP. The GWP and AP were contributed by the electricity used in the fabrication of biocomposites. These impacts were due to the usage of electricity, which contributed to the emission of CO2. However, the PLA/DSF/EPO biocomposite had lower negative impacts because EPO improved the workability and processability of the biocomposite, and hence, reduced the amount of energy required for production. It can be concluded that the plasticized PLA/DSF biocomposite can be a potential biodegradable food packaging material as it has favourable properties and produces no waste. ABSTRAK: Biopolimer adalah terbaik dalam usaha mengganti polimer berasaskan-petroleum dalam mengurang masalah pencemaran-sisa. Ini kerana biopolimer boleh diperbaharui, biodegradasi dan sangat maju secara komersial. Inisiatif telah diambil dengan menghasilkan sabut kulit durian (DSF) bersama biokomposit asid polilaktik (PLA) dengan penambahan minyak kelapa sawit terepoksi (EPO). Biokomposit PLA/DSF direka melalui kaedah pemyemperitan dan acuan suntikan. Biokomposit ini dipantau kitar hidupnya dengan membina sistem sempadan berkaitan proses rekaan menggunakan perisian GaBi. Pengawasan kitar hidup (LCA) biokomposit PLA/DSF menunjukkan potensi pemanasan global (GWP) dan potensi pengasidan (AP) menyebabkan impak terbesar komposit PLA/DSF. Dapatan kajian menunjukkan 199.37 kg CO2 bagi GWP dan 0.58 kg SO2 bagi AP bagi biokomposit PLA/DSF. Sementara itu, dapatan kajian bagi biokomposit PLA/DSF/EPO adalah 195.89 kg CO2 bagi GWP dan 0.57 kg SO2 bagi AP. Kedua-dua GWP dan AP adalah disebabkan oleh penggunaan elektrik dalam proses pembuatan biokomposit. Ini adalah kesan daripada penggunaan elektrik, dan menyumbang kepada pembebasan CO2. Walau bagaimanapun, biokomposit PLA/DSF/EPO mempunyai kurang kesan negatif, kerana EPO telah menambah baik kebolehkerjaan dan kebolehprosesan biokomposit, menyebabkan kurang tenaga yang diperlukan dalam proses pembuatan. Kesimpulannya plastik biokomposit PLA/DSF berpotensi sebagai bahan biodegradasi bagi pembungkus makanan kerana ianya mempunyai ciri-ciri yang diperlukan dan tidak menghasilkan sisa buangan.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1007
Author(s):  
Chun-Hung Moy ◽  
Lian-See Tan ◽  
Noor Fazliani Shoparwe ◽  
Azmi Mohd Shariff ◽  
Jully Tan

Plastics are used for various applications, including in the food and beverage industry, for the manufacturing of plastic utensils and straws. The higher utilization of plastic straws has indirectly resulted in the significant disposal of plastic waste, which has become a serious environmental issue. Alternatively, bio-plastic and paper straws have been introduced to reduce plastic waste. However, limited studies are available on the environmental assessment of drinking straws. Life cycle assessment (LCA) studies for bio-plastic and paper straws have not been comprehensively performed previously. Therefore, the impact of both bio-plastic and paper straws on the environment are quantified and compared in this study. Parameters, such as the global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP), were evaluated. The input–output data of the bio-plastic and paper straws processes from a gate-to-grave analysis were obtained from the literature and generated using the SuperPro Designer V9 process simulator. The results show that bio-plastic straws, which are also known as polylactic acid (PLA) straws, had reduced environmental impacts compared to paper straws. The outcomes of this work provide an insight into the application of bio-plastic and paper straws in effectively reducing the impact on the environment and in promoting sustainability, especially from the perspective of Malaysia.


Author(s):  
Suci Wulandari ◽  
Slamet Raharjo

The increase in solid waste generation is incompatible with solid waste management (SWM). Padang city have a small processing percentage of 5% through composting and recyling. Improper and nonoptimal SWM lead to many obstacles including climate change, water and soil contamination, to creatures life disturbance. By conducting Impact Assessment and Contribution Analysis, this study examines the most impact contributor of unit processes in four scenarios of domestic solid waste management in Padang City. Scenario 0 presents the existing condition; scenarios 1, 2, and 3 present the improvement of Scenario 0 in recycling percentage rate and technology implementation in a row by composting, incineration, and anaerobic digestion. CML2001, impact assessment method by Center of Environmental Sciences of Leiden University, is used to assess the environmental impact of Global Warming Potential (GWP), Acidification Potential (AP), and Eutrophication Potential (EP). This study found that the significant impact for the four scenarios is GWP by the contribution percentage over 72%. While EP is the second place in the contribution range of 1.70% to 5.46%, and followed by AP under 0.91%. Scenario 1 is the best scenario due to the small contribution of impact compared to other scernarios, and potentially to be applied by modification in increase of composting percentage and additional recovery gas in landfill. 


2020 ◽  
Vol 47 (12) ◽  
pp. 1320-1326 ◽  
Author(s):  
Md Rakibul Alam ◽  
Kamal Hossain ◽  
Ali Azhar Butt ◽  
Tim Caudle ◽  
Carlos Bazan

Although pavement maintenance and rehabilitation (M&R) techniques are usually examined in economic terms, there is a growing need to address their environmental footprints. The objective of this study is to assess the environmental impacts of M&R techniques. Life cycle assessment (LCA) can help in the decision-making process of selecting suitable maintenance techniques based on their environmental impacts. This study investigates: patching, rout & sealing, hot in-place recycling, and cold in-place recycling. Global warming potential (GWP), acidification potential, human health particulate, eutrophication potential, ozone depletion potential, and smog potential are estimated as environmental impacts for each maintenance activity. Materials, equipment use (for construction and M&R), and transportation were the main elements considered. A sensitivity test is performed to identify the significant factors for the LCA. The study concluded that GWP was the most important impact category. Rout & sealing and cold in-place recycling produced the lowest GWP emissions. Notably, pavement patching and hot in-place recycling showed significant detrimental environmental impacts.


Sign in / Sign up

Export Citation Format

Share Document