coarse grains
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 69)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 74 ◽  
pp. 474-485
Author(s):  
Bing Guo ◽  
Qingyu Meng ◽  
Guicheng Wu ◽  
Qingliang Zhao ◽  
Shuai Li

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Achillefs Keramaris ◽  
Eleni Kasapidou ◽  
Paraskevi Mitlianga

Abstract Introduction The Pontic Greeks, besides their long and distinguished history, have a special and important culture and identity, elements of which are still preserved and active by their descendants a century after their settlement in Greece. One element of their identity and culture is their basic yet diverse cuisine, which is an important and recognized local cuisine in contemporary Greece. This study aimed to identify the most common foods, ingredients, and dishes found in Greek Pontic Cuisine. Methods Six cookbooks, two cooking magazines, four folklore books, and four folklore magazines were reviewed in this study. A considerable amount of data was collected and processed using a text analysis tool. Results and discussion The study provides the most frequently encountered dishes, foods, and ingredients that feature in the publications. The most common dishes are soups, including tanomenon sorva (soup with coarse grains, salty strained yogurt, and mint). Among other dishes, siron (a pre-baked filo-based pastry dish), chavitz (a thick corn dish resembling porridge), and foustoron (an omelet with fresh cow butter) are quite common. Common staples are anchovies and greens. In cookbooks and cookery magazines, ingredients include butter, wheat, eggs, tomatoes, milk, bulgur, corn-flour, and cheese. Meanwhile, the study publications are an excellent way of passing down traditional food knowledge intergenerational, as they are largely descended from Pontic Greek progenitors. Conclusion After analyzing all the publications, it was declared that dairy products, grains, and vegetables were commonly used in Pontic cuisine. It was concluded that cookbooks are crucial for the preservation of the Greek Pontic culinary tradition.


Author(s):  
Jiying Fan ◽  
R. Kerry Rowe ◽  
Richard W.I. Brachman

Microstructure showing the involvement of the fine and coarse grains in the soil skeleton is evaluated. Incremental loading tests using a stress-dependent permeameter are conducted on the mixtures of poorly graded sand and nonplastic fines originating from tailings. The results are compared with the published data of various tailings. It is shown that increasing the fines content from 0 to 100%, the involvement of the fine and coarse components of soil skeleton can be classified into four categories: no fines involvement (<10% fines), fines partially involved (10% —35% fines), increasing cushioning effect surrounding the coarse (35% — 40% fines), and constant cushioning effect (> 40% fines). At the same consolidation stress, the void ratio, e, rapidly decreases for fines less than 30%, then almost remains constant between 30% and 50% fines, and gradually increases for fines exceeding 50%. The hydraulic conductivity, k, decreases more than 20-fold as the fines content increases from 12% to 50%, then remains constant. k is proportional to [e3/(1+e)]A and inversely proportional to S2, where A is a factor describing the effect of particle angularity and S is the specific surface. Finally, the influence of fines content on the seepage-induced internal stability is discussed.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hezliana Syahwanti ◽  
Irvhaneil Irvhaneil ◽  
Ranty Christiana

The advantages of coconut coir powder (cocopeat) are resistant to microorganisms, weathering and resistant to mechanical spelling, namely friction and blows. Based on these advantages, cocopeat can be used as a blend of fine aggregates in the manufacture of concrete. The sieve test was conducted on the cocopeat to determine the initial feasibility analysis of cocopeat as a blend of fine aggregates in the concrete manufacturing. The results of the cocopeat sieve test are that cocopeat is included in Region II which is classified as a fine module of slightly coarse grains with a fine module of fine aggregate grains of 2.37. This shows that cocopeat has a fairly good value in normal concrete mixtures but is not suitable for high resistance concrete mixtures that exceed 25 MPa. This was followed by a subsidence test that gave subsidence values for mixtures of concrete with a cocopeat composition of 25%, 50% and 75%, is 7.5 cm; 5.3 cm; and 2.2 cm. While a good subsidence ratio is used in the range of 6-18 cm. In addition, the concrete with a 25% blend of cocopeat has a stronger physical form and there are no fungus growing on the surface of the concrete. Meanwhile, concrete with a mixture of 50% and 75% cocopeat looks more fragile and forms molds on the surface of the concrete. Thus the concrete with a mixture of 25% cocopeat has better results.


2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Aswan Aswan ◽  
Yan Rizal

Identifying and constraining palaeotsunami deposits can be a vital tool for establishing the periodicity of earthquakes and their associated tsunami events beyond the historical records. However, the deposits can be difficult to establish and date. In this study we used the characteristics of the 2006 Pangandaran tsunami deposit as a reference for identification of paleotsunami deposits in Karapyak Beach, Pangandaran area, West Java, Indonesia. Similar to the 2006 Pangandaran tsunami deposit, the Karapyak Beach paleotsunami deposit is characterized by light brown loose sand materials overlying a dark brown paleosoil layer with erosional contact. A thin layer that varies in thickness is locally found right above the erosional contact, with non-laminated coarser grain in the lower part that gradually change into medium to fine sand-sized in upper part. The base of the lower part is rich with broken mollusc shells and corals, and the mid-top of the lower part may contain several intact molusc shells and corals, rock fragments and anthropogenic products (rooftile). Those types of fragments are absent in the upper part of the thin layer. Grain size analysis shows a mixture of fine and coarse grains in the lower part of 2006 tsunami deposits as well as in the suspected paleotsunami deposits, suggesting uprush high energy flow during sedimentation. Fining upward sequence above mixed grain layers reflects waning flow or pre-backwash deposition. Foraminifera analysis also shows a mixture of shallow and deep marine foraminifera in the two deposits. Based on the characteristics of the 2006 tsunami deposits, there are at least four identified paleotsunami deposits at Karapyak Beach, Pangandaran area.


2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Dwandari Ralanarko ◽  
Ildrem Syafri ◽  
Abdurrokhim Almabrury ◽  
Andi Agus Nur

INTA/B Field is one of the most producing mature fields in Widuri Area, Asri Basin, Offshore SE Sumatera, Indonesia, therefore it is subjected to rejuvenation to enhance hydrocarbon production. INTA/B Field is distinguished from other fields from its featured anticlinal structures that have the northeast-southwest trending. This structure is heavily faulted mainly in the up-thrown south side of a major normal fault. Two structural configurations with various oil-water contact have successfully been identified within the field. The most of oil reserves are preserved in the western lobe in which Intan-1 sands. One of the most important reservoirs in this field is Talangakar (TAF) sand deposited as a meandering river system that streamed from the northwest to the southeast within the basin. Two main reservoirs, Gita-34A and Gita-34B are correlated throughout the field and interpreted as Miocene fluvio-channel sands. These two channels are thickened moderately from southwest to northeast which has descriptions as follows: fine- to-coarse grains, unconsolidated to friable, and low cementing materials.INTA/B Field has been produced for 25 years and currently undergoing a watered-out phase. Therefore, an integrated study is subjected to overcome this issue for mature field rejuvenation. The integrated study ranged from geology (e.g., depositional environment and facies analysis), geophysics (e.g., revisiting and reprocessing of seismic attributes), petrophysical calculation, and reservoir engineering (e.g., water conformance plot and volumetric calculation).This integrated study has successfully rejuvenated a mature field resulting and added a significant number in oil production with an average of 300 BPOD/well. The extended project is estimated to have a similar result to the forward pilot.


Author(s):  
Elmar Anton Schnorr Filho ◽  
Nicolao Cerqueira Lima ◽  
Erick Franklin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdallah Shokry ◽  
Aylin Ahadi ◽  
Per Ståhle ◽  
Dmytro Orlov

AbstractImprovement of structural efficiency in various materials is critically important for sustainable society development and the efficient use of natural resources. Recently, a lot of attention in science and engineering has been attracted to heterogeneous-structure materials because of high structural efficiency. However, strategies for the efficient design of heterogenous structures are still in their infancy therefore demanding extensive exploration. In this work, two-dimensional finite-element models for pure nickel with bimodal distributions of grain sizes having ‘harmonic’ and ‘random’ spatial topological arrangements of coarse and ultrafine-grain areas are developed. The bimodal random-structure material shows heterogeneities in stress–strain distributions at all scale levels developing immediately upon loading, which leads to developing concentrations of strain and premature global plastic instability. The bimodal harmonic-structure material demonstrates strength and ductility significantly exceeding those in the bimodal random-structure as well as expectations from a rule of mixtures. The strain hardening rates also significantly exceed those in homogeneous materials while being primarily controlled by coarse-grain phase at the early, by ultrafine-grain at the later and by their compatible straining at the intermediate stages of loading. The study emphasises the importance of topological ultrafine-/coarse-grain distributions, and the continuity of the ultrafine-grain skeleton in particular.


Sign in / Sign up

Export Citation Format

Share Document